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Abstract 
 
Backanalysis or backcalculation of in-service pavement mechanical properties (such as elastic 
modulus) from pavement Non-Destructive Test (NDT) deflection data is a routine practice 
carried out by highway engineers for pavement structural condition evaluation, remaining life 
calculations, and mechanistic-based analysis. Owing to the complexity of this ill-conditioned 
inverse modeling problem, numerous backcalculation routines have been developed and 
implemented over the years ranging from simple deflection-basin matching programs to 
intelligent and soft computing based methodologies and each has its own pros and cons. This 
paper presents an efficient off-line pavement backcalculation system based on support vector 
machines (SVM) and compares its performance with another popular machine learning 
technique, multi-layer perceptrons (MLP). Both systems are trained and tested using synthetic 
deflection basins generated using a two-dimensional axisymmetric finite element software 
covering a wide range of in-service pavement scenarios. The results show that the effectiveness 
of SVM approach in pavement backanalysis is comparable to MLP approach, in general, and 
better in some specific cases. 
 
© 2010 Institution of Engineers, Bangladesh. All rights reserved. 
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Notation 
 
The following symbols are used in this 
paper. 
b = bias term; 
C = a pre-specified SVM tolerance 
parameter; 
f = function of; 
f0 = empirical risk minimizer; 
H = function class; 

R[f] = risk functional; 
Remp[f] = empirical risk functional; 
x = input vector (of independent variables); 
y = output variable; 
αi , αi

* = Lagrange multipliers; 
ε = precision parameter; 
ξ , ξ* = slack variables; 
w = a normal vector; 
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K = Kernel function; 
L = loss function; 
l = number of examples in training set; 
P = probability of; 
Rd = d-dimensional real vector space; 
RD= a high-dimensional feature vector 
space; 
<· , · > = dot product; 
δ2 =  bandwidth of Gaussian Kernel; 

t
iy  = target modulus values; 
p

iy  = predicted modulus values; 

t
iy = mean of the target modulus values; 

p
iy = mean of the predicted modulus values 

Φ = function to be minimized; 
W(αi , αi

* ) = dual of Lagrange functional; 
φ (x) = input vector mapped in feature vector space; 

p
xy = the number of predicted modulus values (out of n 

total predicted) for which the absolute relative error less 
x%. 
EAC = asphalt concrete young’s modulus; 
υ = poisson ratio; 
MR = resilient modulus; 
θ = bulk stress; 
K, n = statistical parameters of K-θ model; 
MRi = breakpoint resilient modulus (psi); 
σd = applied deviator stress (psi); 
K1 and K2 = statistical coefficients of bilinear model; 

 
1. Introduction 
 
A conventional asphalt concrete pavement typically consists of three layers: a surface 
layer paved with Asphalt Concrete (AC) mix, a base or/and subbase layer made up of 
crushed stone, and a subgrade layer made up of natural soil. Evaluating the structural 
condition of existing, in-service asphalt concrete pavement roads and their component 
layers is a part of the routine maintenance and rehabilitation activities for sustainable 
infrastructure. The use of nondestructive testing (NDT) methods has increased in 
evaluating the structural condition of new or in-service pavements because NDT testing 
is faster than destructive tests and do not entail the removal of pavement materials. 
Among the available NDT methods used in pavement testing is falling weight 
deflectometer (FWD) based deflection basin testing technique which has become a well-
known and widely accepted procedure since 1980s (Alavi et al. 2008).  
 
When a load is applied on a pavement surface, the pavement layers deflect nearly 
vertically to form a basin. The FWD measures a basin of pavement surface deflections in 
response to a stationary dynamic load, similar to a passing wheel load (Alavi et al. 2008). 
Since the deflection of a pavement represents an overall “system response” of the 
pavement layers to an applied load, the deflected shape of the basin is predominantly a 
function of the thickness of the pavement layers, the moduli of individual layers, and the 
magnitude of the load. Based on this mechanical concept, the in situ moduli of individual 
layers can be estimated from FWD measurements through appropriate analysis methods. 
This procedure called as a pavement layer modulus backcalculation or backanalysis. The 
backcalculation problem of layer modulus of asphalt pavement has been recognized as a 
complex problem (Sharma and Das 2008).  
 
A number of models and software have been developed for the backcalculation of 
asphalt pavement layer moduli and are still evolving to estimate moduli quickly and 
accurately. These models can be classified into static, dynamic, and adaptive models 
(Goktepe et al. 2006). The detail of these models and studies on comparative 
performance are presented in literature (Ali and Khosla 1987, Ullidtz and Coetzee 1995, 
Shoukry and William 1999, Fwa and Thakur 2005, Goktepe et al. 2006, Sharma and Das 
2008, Alavi et al.  2008). Goktepe et al. (2008) explained that the main difference among 
these models is related to the type of the asphalt pavement response model and the 
optimization procedure employed in model development. The types of asphalt pavement 
response model employed are either layered elastic analysis (LEA) theory or finite 
element method (FEM) with linear or nonlinear elastic material behaviors. An 
optimization procedure is used to determine appropriate layer modulus values at given 
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deflection measurements. The optimization procedures in existing backcalaution models 
can be preformed using the least-squares (parameter identification), database search, and 
limited number of artificial intelligence (AI) based techniques (Goktepe et al. 2008) such 
as artificial neural networks (ANN) (Meier and Rix 1994, Gopalakrishnan 2004, Ceylan 
et al. 2007), neuro-fuzzy systems (Goktepe et al. 2006, Goktepe et al. 2008), and Genetic 
Algorithms (GAs) (Fwa et al. 1997, Terzi et al. 2003, Alkasawneh 2007). Particle Swarm 
Optimization (Gopalakrishnan 2010), Differential Evolution (Gopalakrishnan and 
Khaitan 2010), etc.  
 
The rapid development of computer hardware and software has increased the level of AI 
application in data processing and mining (modeling) for knowledge discovery in 
database (KDD), which is a nontrivial process of identifying valid, novel, potentially 
useful, and ultimately understandable patterns in data (Fayyad et al, 1996). The AI is a 
collection of several intelligent analytical tools which attempt to simulate the working 
natural intelligent systems and build systems which could learn (Miradi, 2009). Among 
AI tools is artificial neural networks (ANN) which has been successfully used to solve 
complicated pattern recognition and classification problems in many fields (Panakka and 
Adeli, 2009). The ANN has also been applied for the problem of asphalt pavement layer 
moduli backcalculation.  Once ANN is trained well with a large amount of data, the 
ANN can provide quick computation of solution and considerable accuracy and precision 
compared with backcaluation methods employing classic optimization process and 
neuro-fuzzy systems (Goktepe et al. 2008, Sharma and Das, 2008). 
 
Support Vector Machines (SVM) is another promising AI technique derived from 
statistical learning theory by Vapnik and Chervonenkis (1964) in the Institute for 
Control Problems of the Russian Academy of Sciences. An interesting property of SVM 
compared to conventional ANN is that SVM employ structural risk minimization (SRM) 
principle minimizing a bound on a generalized risk (error) while conventional ANN 
employ empirical risk minimization (ERM) principle minimizing only the error the mean 
square error over the data set (Gunn 1998). This eventually results in better 
generalization performance than conventional ANN (Dibike et al 2001, Tay and Cao 
2001). Another merit of SVM is that the solution of SVM is more unique, optimal and 
absent from local minima rather than conventional ANN (Tay and Cao 2001). This is 
reason that the training of SVM is equivalent to solving a linearly constrained quadratic 
programming as the training of conventional ANN requires non-linear optimization. 
 
Some recent SVM applications in civil engineering domain include remote sensing 
images analysis and rainfall-runoff model (Dibike et al 2001), document classification 
for construction information systems (Caldas and Soibelman 2003), soil moisture 
prediction (Gill et al 2006), conceptual cost estimates in construction projects (An et al 
2007), seismic liquefaction assessment (Goh and Goh 2007), slope reliability analysis 
(Zhao 2008), studying settlement of shallow foundations (Samui 2008), and model for 
contractor prequalification (Lam et al 2009).  This paper explores the feasibility of SVM 
application in backcalculation of asphalt pavement layer moduli. The SVM theory and 
procedure are briefly reviewed. The development of SVM based asphalt pavement layer 
moduli backcalculation models is presented and the performance of SVM models are 
compared with ANN models. 
 
2. Support vector machine (SVM)  
 
One of the broadest subfield in artificial intelligence is the machine learning (ML) 
focusing on the development of data modeling techniques and algorithms that learn from 
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data. SVM is one of the ML techniques derived from statistical learning theory by 
Vapnik and Chervonenkis in the sixties (1964). The foundations of SVM have been 
developed by Vapnik (1995) at AT&T Bell Laboratories and are recognized as attractive 
and promising tool to solve classification and regression related problems (Gunn 1998). 
Initial work of SVM as a classifier focused on optical character recognition and object 
recognition tasks (Smola and Scholkopf 2004). SVM have also provided excellent 
performances in regression and time series prediction applications (Smola and Scholkopf 
2004).  Compared to regression methods by conventional ANN, SVM in regression 
approximation has three distinct characteristics as follows (Tay and Cao 2001): 
  
• SVM use a set of linear functions defined in a high dimensional space,  
• SVM carry out risk minimization using loss functions,  
• SVM use a risk function consisting of the empirical error and a regularization term 

which is derived from the SRM. 
 
Comprehensive tutorials on the use of SVM in regression are available in many sources 
(Burges 1998, Gunn 1998, Cristianini and Shawe-Taylor 2000, Herbrich 2002, 
Scholkopf and Smola 2002, Smola and Scholkopf 2004). A brief summary of the SVM in 
regression is given here primary based on Gunn (1998) and Smola and Scholkopf (2004). 
 
2.1 SVM algorithm in regression approximation 
 
Errors in choosing a model from the hypothesis space arise from two cases. A poor 
choice of the model space results in a large approximation error which is a consequence 
of the hypothesis space being smaller than the target space. Estimation error is related to 
the learning procedure which results in a technique selecting the non-optimal model 
from the hypothesis space. Combination of these errors forms the generalization error.  
 
Suppose that training data are given as {(x1, y1), . . . , (xl , yl)} � X × Rd, where X denotes 
the space of the input patterns (e.g. X = Rd).  The goal of SVM is to find a function f 
minimizing the expected risk (Vapnik 1982). 
 
[ ] ( ) ),()(,, yxdPxfyxLfR ∫=

       
(1) 

 
Where, R[f] is risk functional; L(x, y, f (x)) denotes a loss function determining how we 
will penalize estimation errors based on the empirical data X; P(x, y) denotes distribution. 
However, P(x, y) is unknown. A possible approximation consists in replacing the 
integration by the empirical estimate, to get the so called empirical risk functional as 
follows: 
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Where, Remp[f] is empirical risk functional.  A first attempt would be to find the 
empirical risk minimizer as follows:  
 

[ ]fRf empHf∈≅ minarg0
        

(3) 
Where, f0 denotes empirical risk minimizer; H is some function class. Empirical risk 
minimization makes sense only if, 
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Which is true from the law of large numbers. However, it must also satisfy the following 
equation: 
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Which is only valid when H is ‘small’ enough. This condition is less intuitive and 
requires that the minima also converge. Based on risk functional conditions, the SVM 
algorithm aims to find a function f (x) that has at most ε deviation from the actually 
obtained targets yi for all the training data, and at the same time is as flat as possible 
(Smola and Scholkopf  2004). In other words, errors less than precision parameter ε are 
accepted and errors larger than ε are not accepted.  The case of linear functions f for 
given training data can be represented by the following equation: 
 

bxwxf += ,)(
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Where, w∈X and b∈ R; <· , · > denotes the dot product in X ;  the vector w is a normal 
vector; The parameter 

w
b  determines the offset of the system from the origin along the 

normal vector w. The optimal regression function is given by the minimum of the 
following functional Φ: 
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Where, C is a pre-specified SVM tolerance parameter; ξ and ξ* are slack variables 
determining the degree to which data points will be penalized if the error is larger than 
precision parameter ε. A loss function can be introduced to functional Φ to penalize 
estimation errors. This step is called as soft margin loss setting (Scholkopf and Smola 
2002). Some loss functions commonly used include ε-insensitive, Laplacian, Gaussian, 
Huber’s robust loss, Polynomial and Piecewise polynomial. A detailed description of 
these loss functions and corresponding density models are provided in Smola and 
Scholkopf (2004). The loss function most often referred is the ε-insensitive because it 
can produce sparseness in the support vectors. Fig. 1 illustrates ε-insensitive loss 
function setting to given data in SVM and the ε-insensitive loss function can be 
represented by the following equation: 
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The minimum of the functional Φ problem can be considered as quadratic programming 
(QP) problem. Using the Lagrange theory of quadratic programming, the solution is 
given by following equation: 
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Where, αi and αi

* are Lagrange multipliers. Equation (9) is subjected to following 
condition: 
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Figure 1. ε-Insensitive loss function setting for SVM in regression. 

 
Solving equation (9) with constraints equation (10) determines the Lagrange multipliers 
(αi and αi

*), and the w and b of regression function given by equation (6) are finally 
obtained as follows:  
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Based on the  Karush–Kuhn–Tucker (KKT) conditions demanding that the product 
between the dual variables and constraints should vanish for optimality, the coefficients  
αi and αi

* of the data points inside ε bound of the function f  are zero and the coefficient  
(αi - αi

* ) of the data points lying on or outside the ε bound have no-zero value. The 
support vectors are referred to data points with non-vanishing coefficients (see Fig. 1). 
According to equation (11), it is evident that support vectors are only used in 
determining the decision function since the coeffiecient (αi - αi

* ) of other data points are 
all equal to zero. In case of non-linear regression, instead of trying to fit a nonlinear 
model, the training patterns xi are preprocessed into a high-dimensional feature space RD  
by a mapping φ : Rd→ RD. Therefore, the dot product <xi, xj> in Rd for the linear case is 
equivalent to <φ (xi), φ (x j)> in RD for the non-linear case. The SVM training algorithm 
would only depend on the data through dot products in RD. If the dot product in the 
feature space RD is expressed by following equation called as Kernel function, one 
would only need to use K in the SVM training algorithm without treating the feature 
space explicitly to obtain φ (xi) ; 
 



K. Gopalakrishnan and S. Kim / Journal of Civil Engineering (IEB), 38 (2) (2010) 173-190 179

>=< )(),(),( jiji xxxxK φφ
                   

(13) 
 
Typical Kernel functions described in Gunn (1998) include polynomial, gaussian radial 
basis function, exponential radial basis function, multi-layer perceptron, and so on. In 
this way, a nonlinear model in the original space can be transformed to the linear model 
in the new space. The regression function for linear case as shown in Equations (11) and 
(12) can be transformed to the one for nonlinear case with Kernel function as follows: 
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2.2 SVM procedure in regression approximation 
 
Fig. 2 contains a graphical overview of the different steps used in the SVM procedure in 
regression approximation. The input data for training model are introduced to SVM 
architecture by specifying error precision (insensitive) parameter ε and SVM tolerance 
(capacity) parameter C. The ε parameter determines a certain distance of the true value 
where errors can be ignored. In general, the increase in ε value decreases the number of 
support vectors and then make the representation of the solution sparser. However, a 
larger ε can also depreciate the approximation accuracy placed on the training points. In 
this sense, ε is a tradeoff between the sparseness of the representation and closeness of 
data (Tay and Cao 2001).  The parameter C controls the tradeoff between levels of 
constraints and complexity of system regulation (Gill et al 2006). The increase in C 
value makes the problem unconstrained and the decrease in C value assigns more weight 
to regulation.  
 

<φ(x),φ(x1)> …

K(x,x1) K(x,x2) … K(x,xn)

f(x) = ∑ + b

Input data 
x1,..xi.., xn

Dot product in 
feature space

Kernel function

Weights (α i − α i
∗ )

Output f(x) = 
∑(wi K<x,xi>)+b

K(x,x3)

<φ(x),φ(x2)> <φ(x),φ(x2)> <φ(x),φ(xn)>

w1 w2 w3 wn…

x1 x2 x3 xn…

…

 

Figure 2. Architecture of SVM in regression. 
 
For the nonlinear case, the input data are transformed into a high-dimensional feature 
space RD through a function, φ. However, instead of explicitly finding the transformation 
functionφ, the dot product of transformed input data could be calculated through the 
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Kernel function K selected through a trial and error procedure. Solving optimal 
regression function with selected loss functional under given parameters (C, ε and K) 
results in finding support vectors, Lagrange multipliers (αi and αi

* ) and weights wi = αi − 
αi

*. The calculated dot products are added up using the weights wi. The primal bias term 
variable b is also recovered and formulated to the final predictive model as output. The 
constructed SVM regression model can be evaluated with new data set (testing data set). 
The SVM process described is very similar to regression in a NN except that in the SVM 
case the weights in the input layer are a subset of the training patterns (Smola and 
Scholkopf  2004). 
 
3. Development of SVM based nonlinear backcalculation models 
 
3.1 Data generation using finite-element program  
 
Data used in this study were generated from a two-dimensional axi-symmetric pavement 
finite-element (FE) software (ILLI-PAVE) developed at the University of Illinois at 
Urbana-Champaign (Raad and Figueroa 1980). It incorporates stress-sensitive material 
models and it provides a more realistic representation of the AC pavement structure and 
its response to loading. Numerous research studies have validated that this pavement FE 
model provides a realistic AC pavement structural response prediction for highway and 
airfield pavements (Thompson and Elliot 1985, Thompson 1992, Gomez-Ramirez et al. 
2002, Garg et al. 1998).  Therefore, it was used in this study as the main validated 
nonlinear structural model for analyzing conventional flexible pavements.  
 
A typical FWD test is performed by dropping a  40-kN (9,000-lb) load on the top of 
circular plate with a radius of 152 mm (6 inches) resting on the surface of the pavement. 
Typically deflections are measured at offsets of 0 (D0), 300 (D300), 600 (D600), 900 
(D900), 1200 (D1200), and 1500 (D1500) mm from the center of the loading plate. The effect 
of FWD loading was simulated in the pavement FE program. 
 
The AC surface layer was treated as a linear elastic material with Young’s Modulus, 
EAC, and Poisson ratio, υ. Stress-dependent elastic models along with Mohr-Coulomb 
failure criteria were applied for the unbound aggregate base and fine-grained soil 
subgrade layers. The ‘stress-hardening’ K-θ model (Hicks and Monismith 1971) was 
used for the base layer: 

n

R

D
R KM θ

ε
σ

==  (16) 

Where MR is resilient modulus (psi), θ is bulk stress (psi) and K and n are statistical 
parameters. Based on extensive testing of unbound aggregate materials, Rada and 
Witczak (1981) proposed the following relationship between K and n (R2 = 0.68, 
Standard Error of Estimate [SEE] = 0.22): 
 
Log10 (K) =4.657 – 1.807n (17) 
 
The ‘stress-softening’ bilinear model (Thompson and Robnett 1979) was used for the 
subgrade layer: 
 

diddidRiR

diddidRiR

forKMM
forKMM

σσσσ
σσσσ

>−+=
<−+=

).(
).(

2

1
 (18) 



K. Gopalakrishnan and S. Kim / Journal of Civil Engineering (IEB), 38 (2) (2010) 173-190 181

 
Where MR is resilient modulus (psi), MRi is breakpoint resilient modulus (psi), σd is 
applied deviator stress (psi), K1 and K2 are statistically determined coefficients from 
laboratory tests   
 
Asphalt concrete modulus EAC, granular base K-θ model parameter K, and the subgrade 
soil break point deviator stress MRi in the bilinear model were used as the layer stiffness 
inputs for all the different conventional flexible pavement FE runs. The 40-kN (9-kip) 
wheel load was applied at a uniform pressure of 552 kPa (80 psi) over a circular area of 
radius 152 mm (6 in.).  The thickness and moduli ranges used in developing the synthetic 
solutions are summarized in Table 1. 

 
Table 1 

Pavement geometry and material property/model inputs for FE solutions 
Material  

type 
Layer  

thickness 
Material 
model 

     Layer modulus  
inputs 

 
Poisson’s ratio 

Asphalt  
concrete 

hAC = 76 to 381 
mm       (3 to 15 
in.) 

Linear  
elastic 

EAC = 690 to 13,800 
MPa (100 to 2,000 
ksi) 

ν = 0.35  
 

Unbound 
aggregate  
base 

hGB = 102 to 559 
mm (4 to 22 in.) 

Nonlinear 
K-θ model 

MR = Kθn 
“K” = 20.7 to 82.7 
MPa 
     (3 to 12 ksi) 
“n” from Equation 17 

ν = 0.35  for 
K ≥ 34.5 MPa (5 ksi) 
ν = 0.40  for   
K < 34.5 MPa (5 ksi) 

Fine-
grained 
soil 
subgrade  

7,620 mm (300 
in.) minus total      
pavement 
thickness 

Nonlinear 
bilinear 
model 

MR = f (MRi);  
MRi = 6.9 to 96.5 MPa 
   (1 to 14 ksi) 

ν = 0.45 

 
A total of 8,500 FE runs were conducted by randomly choosing the pavement layer 
thicknesses and input variables within the given ranges in Table 1 to generate a 
knowledge database for both SVM and ANN trainings.  The total analysis depth of the 
pavement system was taken as 7,620 mm (300 in.).  The subgrade thicknesses were 
calculated by subtracting the thicknesses of the AC and the base from the total analysis 
depth. The outputs recorded were the pavement surface deflection basin and the critical 
pavement responses, radial strain at the bottom of the AC layer (εAC), vertical strain on 
top of the subgrade (εSG), and the deviator stress on top of the subgrade layer (σD).   
 
3.2 SVM modeling  
 
The six deflections computed at radial offset values from the load center which define 
the deflection basin, the thickness of AC surface layer (TAC), and the thickness of the 
base layer (Tb) together formed the eight input features for the pavement layer moduli 
backcalculation models. The natural subgrade is assumed to be of infinite thickness and 
was not considered. The modulus of the AC surface layer, EAC, the nonlinear modulus 
parameter of the unbound aggregate base layer Kb, and the nonlinear elastic modulus of 
the fine-grained soil subgrade layer, MRi, represent the three output vectors. The eight 
input parameters were used in the development of SVR models denoted as ‘SVM EAC’ 
with one output variable of EAC, and ‘SVM MRi’ with one output variable of MRi. The 
prediction of base layer modulus parameter, Kb is not straightforward as confirmed by 
previous studies (Ceylan et al. 2007). Therefore, both the SVM predicted EAC and MRi 
were used as inputs in addition to AC surface layer thickness, base layer thickness, and 
the first four surface deflections in developing ‘SVM Kb’ model with one output variable 
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of Kb. The input and output parameters for the developed SVM models are summarized 
in Table 2. 
 
One of the important steps in SVM model development is the setting up of the 
appropriate Kernel function K and parameters C and ε for training the SVM. This study 
used the Gaussian function shown in Equation (19) as the SVM Kernel function because 
Gaussian kernels tend to give good performance under general smoothness assumptions 
(Tay and Cao, 2001). 
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ji xx
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−

=
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Table 2  
Summary of input and output parameters used in developing SVM backcalculation models 

SVM Model Output Input 
SVM EAC EAC TAC, Tb, D0, D300, D600, D900, D1200, and D1500 

 
SVM MRi MRi TAC, Tb, D0, D300, D600, D900, D1200, and D1500 
 
SVM Kb 

 
Kb 

 
EAC, MRi, TAC, Tb, D0, D300, D600, and D900 

Note: EAC – elastic modulus of AC surface layer (MPa); Kb – modulus parameter of unbound base layer (MPa); MRi – 
elastic modulus of unbound subgrade layer (MPa); TAC – thickness of AC surface layer (mm); Tb – thickness of 
unbound base layer (mm); D0, D300, D600, D900, D1200, and D1500 – surface deflections measured at radial offsets of 0, 300, 
600, 900, 1200, and 1500 mm, respectively, from the center of the FWD loading plate. 
  
Where δ2 is the bandwidth of Gaussian Kernel. The values for C, ε, and δ2 were selected 
based on preliminary parametric sensitivity analysis as well as based on previous 
experience (Gopalakrishnan et al. 2009). The SVM model parameters used in this study 
are summarized in Table 3. 

 
Table 3  

Summary of SVM model parameters 
SVM Model Parameter Value 
C, SVM tolerance parameter 50 

ε, precision parameter 0.001 
K, kernel function Gaussian 
δ2, kernel bandwidth 0.3 

 
The data were divided randomly into two different subsets as the training data subset and 
the testing data subset in such a way that they are representative of same statistical 
population. Ninety percent (i.e., 7,500 data points) of the data were used for training and 
10% (1,000 data points) were used for testing. Both datasets were normalized within the 
range of 0.1 to 0.9. A grid of scatterplot matrices between pairs of variables used in 
SVM backcalculation modeling is displayed in Fig. 3. These scatterplot matrices present 
comparisons among many variables visually by presenting orderly collections of 
bivariate graphs. A 95% bivariate normal density ellipse is imposed on each scatterplot 
and the variables are considered to be uncorrelated if the ellipse is fairly round and is not 
diagonally oriented. It can be easily observed that AC surface layer modulus, EAC, is 
better correlated to surface deflections nearer to the loading plate starting with D0 
whereas subgrade layer modulus, MRi, is strongly correlated to surface deflections 
farther from the loading plate. Base layer modulus parameter, Kb, is poorly correlated to 
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all the surface deflections. This is further confirmed by the sample contour plots 
depicted in Fig. 4 between input and output variables in the synthetic database. 
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Figure 3. Grid of scatterplot matrices between variables used in SVM modeling. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Contour plots showing relationship between normalized input and output variables in 
the synthetic database: (a) elastic modulus of AC surface layer (EAC), thickness of AC surface 
layer (TAC), and surface deflection measured at 0-mm radial offset from the center of the loading 
(D0); (b) elastic modulus parameter of base layer (Kb), thickness of base layer (Tb), and elastic 
modulus of AC surface layer (EAC); and (c) elastic modulus of subgrade layer (MRi), thickness of 
AC surface layer (TAC), and surface deflection measured at 1500-mm radial offset from the 
center of the loading (D1500) 
 
The training data subset was used for SVR model learning and the testing data subset 
was used to examine the statistical accuracy of the developed SVR models. As stated 
earlier, three kinds of models were developed in this study, namely, SVM EAC, SVM Kb 
and SVM MRi. The MATLAB toolbox for SVM (Rakotomamonjy and Canu 2008) was 
adapted for developing the SVM backcalculation models. 
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4. Evaluation of SVM models  
  
4.1 Evaluation criteria 
 
Quantitative assessments of the degree to how close the models could predict the actual 
outputs are used to provide an evaluation of the models’ predictive performances. A 
multi-criteria assessment with various goodness-of-fit statistics was performed using the 
1,000 test vectors as an independent dataset which was not used in training the models. 
The criteria that were employed for evaluation of models’ predictive performances were 
the coefficient of correlation (R), the coefficient of determination (R2) with reference to 
the line of equality, root-mean-square error (RMSE) between the actual and predicted 
values, the absolute average error (AAE), and threshold statistic (TS). The definitions of 
these evaluation criteria are provided in Table 4.  
 
The R and R2 are a measure of correlation between the predicted and the measured values 
and therefore, determines accuracy of the prediction model (higher R and R2 equates to 
higher accuracy). The RMSE and the AAE indicate the relative improvement in accuracy 
and thus a smaller value is indicative of better accuracy. The threshold statistic (TS) or 
cumulative frequency employed as a local statistics criterion provides the distribution of 
prediction errors (Jain et al. 2001, Padmini et al. 2008).  For a level of error x %, the 
threshold statistic, represented as TSx, is a measure of the consistency in forecasting 
errors from a particular model. Thus, a higher number of TSx at a given level error x % 
indicate higher accuracy. 
   
4.2 Accuracy of SVM models  
 
A summary of the model performance statistics for the developed models are 
summarized in Table 5 for both SVM and ANN. The ANN MLP models used in this 
study are discussed in detail by Gopalakrishnan (2004). The linear correlation between 
the actual and predicted pavement layer moduli values is shown in Fig. 5 with the 
corresponding values of R2. The correlation statistic (R) between the actual and predicted 
modulus is as high as 0.9 for all the models. The value of R2 that evaluates the 
performance of the model in predicting the modulus values scattered around the line of 
equality without bias is found to be more than 0.9 for the all the models except ANN Kb 
model with about 0.6 of R2.  
 
A RMSE value of 245.5 MPa and AAE value of 1.24 % for ANN EAC model are lower 
than the 1,434.8 MPa of RMSE and 9.68 % of AAE values for SVM EAC. However, 10.2 
MPa of RMSE and 14.21 % of AAE values for ANN Kb model are higher than 5.1 MPa of 
RMSE and 8.08 % of AAE values for SVM EAC.  This indicates that the ANN MLP model 
provides better performance in predicting the modulus of the AC surface layer (EAC) 
while the SVM provides better prediction performance in the case of unbound aggregate 
base layer nonlinear modulus parameter (Kb). Little difference in performance statistics 
between SVM MRi and ANN MRi gives an indication that both methods provide similar 
prediction performance for the nonlinear elastic modulus of the fine-grained soil 
subgrade layer (MRi). 
 
SVM predicted nonlinear pavement layer moduli response surfaces are illustrated in Figs. 
6, 7, and 8, for EAC, Kb, and MRi, respectively as functions of input variables to which 
they are closely correlated. 
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Figure 5. Targeted vs. predicted pavement layer modulus values. 

 
The previously discussed statistical performance evaluation criteria (R, R2, RMSE, and 
AAE) provide relevant information on the overall or global performance of the models. 
The threshold statistic (TS) or cumulative frequency was employed to evaluate local 
performance of the models. The TS not only provides the performance index in terms of 
predicting modulus but also the distribution of prediction errors (Jain et al. 2001, 
Padmini et al. 2008). This criterion can be expressed for different levels of absolute 
relative error from the model. For EAC predictions as shown in Fig. 9 (a), the ANN model 
predicted 98 % of the total number of testing data with less than 5 % relative error while 
the corresponding value of SVM model is 69 %. However, the SVM model in Fig. 9 (b) 
shows much better model performance for Kb predictions. Only 24 % of the total number 
of testing data with less than 5 % relative error was predicted by ANN Kb model but the 
corresponding value of SVM Kb model is 69 %. Little difference in TS values of SVM 
MRi and ANN MRi models were observed in Fig. 9 (c). 
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Table 4 
 SVM model performance evaluation criteria 

 
Evaluation criteria Definition 
Coefficient of correlation (R) 

∑∑
∑

==

=

−−

−−
=

n

i
pp

i
n

i
tt

i

n

i
pp

i
tt

i

yyyy

yyyy
R

1
2

1
2

1

)()(

))((  

Coefficient of determination 
(R2) 

∑
∑

=

=

−

−
−=

n

i
tt

i

n

i
p

i
t
i

yy

yy
R

1
2

1
2

2

)(

)(
1  

Root-mean-square error 
(RMSE) 

n
yy

RMSE
n

i
p

i
t
i∑ =
−

= 1
2)(

 

Absolute average error (AAE) 

n
y

yy

AAE

n

i t
i

p
i

t
i∑ =

×
−

=
1

100
 

Threshold statistic (TS) 
100×=

n
yTS

p
x

x

 
Note:

 

t
iy and p

iy are the target and predicted modulus values, respectively, 
t
iy and p

iy are the mean of the target and predicted modulus values 
corresponding to n patterns.

 

p
xy  is the number of predicted modulus values (out 

of n total predicted) for which the absolute relative error less x% from the model. 
 

Table 5  
Comparison of model performance 

 
Predictive parameters 

EAC Kb MRi  
Performance 

index SVM EAC ANN EAC SVM Kb ANN Kb SVM MRi  
ANN 
MRi  

R  0.9930 0.9998 0.9616 0.8933 0.9947 0.9955 
R2  0.9854 0.9996 0.9226 0.6888 0.9891 0.9905 

RMSE, MPa 1,434.8 245.5 5.1 10.2 3.0 2.8 
AAE, % 9.68 1.24 8.08 14.21 3.96 3.50 

 

 
 
Figure 6. SVM predicted AC surface layer modulus (EAC) response surface as a function of AC surface 
layer thickness (TAC) and surface deflection at 0-mm radial offset from the center of the loading plate 
(D0). 
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Figure 7. SVM predicted base layer modulus parameter (Kb) response surface as a function of AC 
surface layer elastic modulus (EAC) and subgrade layer elastic modulus (MRi). 
 
 

 
Figure 8. Subgrade layer elastic modulus (MRi) as a function of AC surface layer elastic modulus (EAC) 
and surface deflection measured at 1500-mm radial offset from the center of the loading (D1500). 
 
5. Concluding remarks 
  
Evaluating the structural condition of existing, in-service asphalt concrete pavement 
roads using Non-Destructive Test (NDT) is a part of the routine maintenance and 
rehabilitation activities for sustainable infrastructure. Backcanalysis or backcalculation 
of pavement mechanical properties (such as elastic modulus) from pavement NDT 
deflection data is carried out by highway engineers for pavement structural condition 
evaluation, remaining life calculations, and mechanistic-based analysis. This paper 
presented an efficient off-line nonlinear pavement backcalculation system based on 
support vector machines (SVM) and compares its performance with another popular 
machine learning technique, multi-layer perceptrons (MLP). The results show that the 
effectiveness of SVM approach in pavement backanalysis is comparable to MLP 
approach, in predicting Asphalt Concrete (AC) surface layer and nonlinear subgrade 
layer moduli, and better in predicting unbound nonlinear base layer modulus parameter.  
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Figure 9. Threshold statistic (TS): SVM Vs ANN models. 
 
However, ANN MLP model development require a large number of controlling 
parameters to optimize and relatively larger training database while SVM require only 
three controlling parameters (C, ε, and δ2) with little dependency on the magnitude of 
training datasets required. These advantages of SVM can make it a promising alternative 
to MLP considering the availability of limited and non-representative data frequently 
encountered in civil infrastructure real-life decision-making situations. 
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