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Abstract 
 
In the present paper, a non-dimensional mathematical model for high tower buildings and its 
foundation under randomly fluctuating wind loads and earthquake ground motions excitations is 
developed as a nonlinear model to study the system more extensively. The system main equations 
could be derived using two different derivation methods and linearized in minimal symbolic forms; 
which facilitate a subsequent numerical simulation in order to investigate the vibration characteristics 
of whole system. The analysis enables designers to have more insight into the characteristics of high 
tower buildings of similar configuration but with different geometry and material. The complexity of 
wind loading with its variations in space and time has been considered. A comprehensive mathematical 
model of six degrees of freedom is presented and solved for free and forced vibrations. 
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List of symbols 
Cp Aerodynamic pressure factor (-) 
E Kinetic energy of the system (J) 
Ed Soil dynamic modulus of elasticity (kp/m3)   
F1H, F1V Spring and damping forces at C or E in horizontal and vertical direction (kp) 
F2H, F2V Spring and damping forces at D or F in horizontal and vertical direction (kp) 
FEH, FEV Spring and damping forces at s1 in horizontal and vertical direction due to earthquake effect (kp) 
H(iΩ) imaginary transformation function (-)  
J1, J2 Mass moment of Inertia of foundation with its accompanied vibrated soil and tall building (kg.s2.m)  
JF, JS Mass moment of Inertia of foundation and accompanied vibrated soil with it (kg.s2.m)  
kEH, kEV Linear horizontal and vertical equivalent spring stiffness of earth (kp/m) 
kEK Rotational equivalent spring stiffness of earth (kp.m/rad) 
kH, kV Linear horizontal and vertical equivalent spring stiffness of building-foundation connection (kp/m) 
L Lagrangian function (-) 
m1, m2 Total mass of foundation with its accompanied vibrated soil (mF+ mS) and tall building (kg) 
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mF, mS Foundation and Vibrating soil mass (kg) 
MW(t) Total turbulent wind moment as a function of time (kp.m) 

Kq  General coordinates ****** ,,,,, 222111  and y z  y z  (m, m, rad, m, m, rad) 

 R
jiQQ )( Cross correlation function of the excitations (m2) 

)(),( 
srsr XXqq RR Cross correlation function of response with respect to general and original coordinates (m2) 

  Rayleigh’s dissipation function(kp.m/s)       
    
rb Vertical embedding damping constant: the damping constant of radiation (kp.s/m3) 
rEK Rotational equivalent damping coefficient of earth (kp.m.s/rad) 
rEH, rEV Linear horizontal and vertical equivalent damping coefficient of earth (kp.s/m) 
rH, rV Linear horizontal, vertical equivalent damping coefficient of building-foundation connection (kp.s/m) 
rS Damping coefficient of the elastic soil bed (kp.s/m3) 
s1, s2 Centre of gravity of the foundation and tall building (-) 

 SS
srii qqqq )(),(  Auto and cross power spectral density function of response w.r.t. general coordinates 

(m2.s/rad) 
 SS

srii QQQQ )(),(  Auto and cross power spectral density function of excitations (m2.s/rad) 

)(),( 
srnn XXXX SS Auto and cross power spectral density function of response w.r.t. original 

coordinates(m2.s/rad) 
t Time (s) 
TEK Spring and damping torques about s1 in rotational direction (kp.m) 
U Potential energy of the system (J) 

)(HU  Average wind velocity along the building height H (m/s) 

)(),( tUtU zy Random displacement excitation of earthquake in horizontal and vertical direction (m)  

),( tzU  Wind speed as a function of space and time (m/s) 

)(zU  Constant part of wind speed as a function of space (m/s) 

),(' tzU  Turbulent part of wind speed as a function of space and time (m/s) 

SV  Vertical wave velocity (m/s) 
)(tW  Total turbulent wind force in y*-direction as a function of time (kp) 

),( tzW  Wind load as a function of space and time (kp) 

)z(W  Constant part of wind load as a function of space (kp) 

)t,z(W '  Turbulent part of wind load as a function of space and time (kp) 

x  Amplitude of exponential solution of motion differential equations (m) 

)t(z ),t(y *
o

*
o  Displacement of point O in the direction of axisz and y oo ** (m) 

)(),(),(),(),(),(  222111  z y  z y non-dimensional Displacements (-) 

)(),(),(),(),(),( ''''''  222111  z y  z y non-dimensional velocities (-) 

)(),(),(),(),(),( """"""  222111  z y  z y non-dimensional accelerations (-) 

)(),( ** tzty 11   Displacement of gravity centre s1 of foundation in **
11 z and  y - axis (m) 

)(),( ** tzty 22   Displacement of gravity centre s2 of high tower building in **
22 z and  y - axis (m) 

)t(z ),t(y *
C

*
C  Displacement of point C in the direction of axisz and y *

C
*
C  (m) 

)(),( ** tz ty CC   Velocity of point C in the direction of axisz and y *
C

*
C  (m/s) 

)(),( ** tz ty CC   Acceleration of point C in the direction of axisz and y *
C

*
C  (m/s2) 

)t(z ),t(y *
D

*
D  Displacement of point D in the direction of axisz and y *

D
*
D  (m) 

)(),( ** tz ty DD   Velocity of point D in the direction of axisz and y *
D

*
D  (m/s) 

)(),( ** tz ty DD   Acceleration of point D in the direction of axisz and y *
D

*
D  (m/s2) 

)(),( ** tz ty EE   Displacement of point E in the direction of axisz and y EE ** (m) 
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)(),( ** tz ty EE    Velocity of point E in the direction of axisz and y EE ** (m/s) 

)(),( ** tz ty EE    Acceleration of point E in the direction of axisz and y EE ** (m/s2) 

)(),( ** tz ty FF   Displacement of point F in the direction of axisz and y FF ** (m) 

)(),( ** tz ty FF    Velocity of point F in the direction of axisz and y FF ** (m/s) 

)(),( ** tz ty FF    Acceleration of point F in the direction of axisz and y FF ** (m/s2) 
  Profile constant (-) 

 B  Specific weight of the high tower building (kp/m3) 

21  and  ,, Density of air, foundation, and high tower building respectively (kg/m3) 
    non-dimensional time [-] 

)(* to , )(* t1 , )(* t2 Angular displacements about axisx andxx 21o *** ,,  [rad] 

)(to , )(t1 , )(t2 non-dimensional angular displacement about axisx andxx 21o *** ,,  [-] 
 
 
1. Introduction 
 
Large investments have recently been made for the construction of new medium- and high-
rise buildings in the world. In many cases performance-based designs have been the preferred 
method for these buildings. A main consideration in performance-based seismic design is the 
estimation of the likely development of structural and nonstructural damage limit-states given 
a hazard level. For this type of buildings efficient modeling techniques are required able to 
compute the response at different performance states. Certain structures are less vulnerable 
against vibration impacts whereas certain others are more vulnerable. As we all know that 
vibration effects are now cannot be neglected, as our day to day life is affected by them. 
Study of vibration responses of structures has always been a principal concern for design 
engineers. Therefore, we do put an eye on the vibrations of buildings and its foundations. 
Uncontrolled vibration causes devastation. Occurrences of Tsunami, earthquake, collapse of 
structures are few such most common devastating effects of vibration. Thus the study of 
vibration responses in advance is of immense importance for sustainable and positive effects 
of vibrations for the well being of humans. 
 
Nowadays, the new and emerging concept of seismic structural design, the so-called 
performance-based design, requires careful consideration of all aspects involved in structural 
analysis. One of the most important aspects of structural analysis is Soil-Structure Interaction 
(SSI). Such interaction may alter the dynamic characteristics of structures and consequently 
may be beneficial or detrimental to the performance of structures. Soil conditions at a given 
site may amplify the response of a structure on a soil deposit. Not taking into account these 
structural response amplifications may lead to an under-designed structure resulting in a 
premature collapse during an earthquake. Analytical methods of SSI concentrate mainly on 
single degree of freedom systems and analysis/design of long and important structures such as 
large bridges and nuclear power plants, and rarely on regular type buildings. Studies which 
include SSI effects will help to better predict the performance of structures during future 
ground motions. State of the art knowledge and analytical approaches require, that, the 
structure-foundation system to be represented by mathematical models that include the 
influence of the sub-foundation media.  
 
A research work of Panagiotou, M. (2008) was conducted at University of California San 
Diego (UCSD) on the seismic design, experimental response, and computational modeling of 
medium- and high-rise reinforced concrete wall buildings. Kim, S.J. (2008) presented an 
investigation of the effect of vertical ground motion on reinforced concrete structures studied 
through a combined analytical-experimental research approach. Krier, D. (2009) analyzed 
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several soil-structure interaction problems. Buildings on elastic foundations were studied and 
comparisons were made between analytical results and the solutions obtained from a Tera 
Dysac finite element analysis. Gouasmia, A. et al. (2009) studied the seismic response of an 
idealized small city composed of five equally spaced, five storey reinforced concrete 
buildings anchored in a soft soil layer overlaid by a rock half space. These results show 
response amplification of the buildings in the near field in accordance with the results 
observed in similar cases. Antonyuk, E.Ya., Timokhin, V.V. (2007) outlined a mathematical 
model describing the vibrations of buildings and engineering structures with general-type 
passive shock-absorbers, rigid bodies, and ideal constraints. 
 
Auersch, L. (2008) predicted a practice-oriented environmental building vibrations. A 
Green’s functions method for layered soils is used to build the dynamic stiffness matrix of the 
soil area that is covered by the foundation. A simple building model is proposed by adding a 
building mass to the dynamic stiffness of the soil. Belakroum, R., et al. (2008) studied the 
numerical prediction of the aerodynamic behaviour of rectangular buildings. Simulations 
were made for rectangles of different side coefficients and different angles of attack. The 
finite element method is used to simulate fluid flow considered Newtonian and 
incompressible. Davoodi, M., et al. (2008) used the ambient vibration tests to rely on natural 
excitations, consequently, it was recommended to perform impulsive test for identifying the 
hidden dynamic characteristics of the building. Kuźniar, K. and Waszczyszyn, Z. (2006) 
applied neural networks for computation of fundamental natural periods of buildings with 
load-bearing walls. The analysis is based on long-term tests performed on actual buildings. 
The identification problem was formulated as the relation between structural and soil 
basement parameters, and the fundamental period of building. 
 
Uzdin, A.M. et al. (2009) derived equations for the vibrations of a building on the foundations 
under consideration. Impossibility of use of traditional methods of the linear-spectral theory 
for analysis of their earthquake resistance is demonstrated. It is established that the systems 
under consideration do not possess a natural vibration period, and may have ambiguous 
solutions for forced vibrations. The influence of city traffic-induced vibration on Vilnius 
Arch-Cathedral Belfry was investigated (Kliukas, R. et al. 2008). Two sources of dynamic 
excitation were studied. Conventional city traffic was considered to be a natural source of 
excitation while excitation imposed artificially by moving a heavily loaded truck was 
considered to be the source of increased risk excitation. Configuration of equipment on 
springs is simplified for numerical analysis. A simplified approach and associated equations 
of motion can be developed to evaluate the response of the equipment with vertical and 
horizontal forcing functions (Turner, J. 2004). Gong, Y. (2010) developed a free vibration 
analysis method for space mega frames of super tall buildings. The physical model of a mega 
frame was idealized as a three-dimensional assemblage of stiffened close-thin-walled tubes 
with continuously distributed mass and stiffness. 
 
Yang, Y.B. et. al analyzed the wave propagation problems caused by the underground moving 
trains by the 2.5-dimensional finite/infinite element approach. The near field of the half-
space, including the tunnel and parts of the soil, was simulated by finite elements, and the far 
field extending to infinity by infinite elements. Ground-borne vibrations due to subway trains 
have sometimes reached the level that cannot be tolerated by residents living in adjacent 
buildings (Shyu et. al. 2002). Also, approaches for predicting vibrations caused by metro 
trains moving through the tunnel were developed (Gupta et al. 2007), e.g., a semi-analytical 
pipe-in-pipe model (Forrest and Hunt 2006a,b) and a coupled periodic finite-element–
boundary-element model (Clouteau et al. 2005; Degrande et al. 2006b). Clearly, ground-borne 
vibrations have become an issue of great concern, which will continuously attract the 
attention of researchers and engineers worldwide. many research projects on ground-borne 
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vibrations due to subway trains were conducted by field measurement (Vadillo et al. 1996; 
Degrande et al. 2006a) and empirical or semiempirical prediction models (Kurzweil 1979; 
Trochides 1991; Melke 1998). These studies provide practical references for solving related 
problems. However, most of these studies were performed for a specific condition, thereby 
suffering from the lack of generality. On the other hand, concerning the techniques of 
simulation, most previous works have been based on the two-dimensional (2D) models 
(Balendra et al. 1991; Yun et al. 2000; Metrikine and Vrouwenvelder 2000). 
 
Prowell, I. (2011) presented an experimental and numerical investigation into the seismic 
response of modern wind turbines simultaneously subjected to wind, earthquake, and 
operational excitation. Ulusoy, H.S. (2011) described a certain class of system identification 
algorithms with particular emphasis on civil engineering applications. The algorithms 
originated from system realization theory enabled one to identify finite dimensional, linear, 
time-invariant models of systems in the state space representation from observed data. 
Wieser, J. (2011) used OpenSees finite element framework to develop full three dimensional 
models of four steel moment frame buildings. The incremental dynamic analysis method is 
employed to evaluate the floor response of inelastic steel moment frame buildings subjected 
to all three components of a suite of 21 ground motions. Ghafari Oskoei, S.A. (2011) dealt 
with the dynamic behavior of tall guyed masts under seismic loads. Zhong, P. (2011) utilized 
a ground motion acceleration time-history as an input to an analytic model of a structure and 
solved the structural response at each time step of the ground motion record.  
 
Weng, S. (2010) proposed a forward substructuring approach, the eigenproperties of the 
partitioned substructures were assembled to recover the eigensolutions and eigensensitivities 
of the global structure, which were tuned to reproduce the experimental measurements 
through an optimization process. Sonmez, E. (2010) developed semi- active controllers, 
which were based on real-time estimation of instantaneous (dominant) frequency and the 
evolutionary power spectral density by time-frequency analysis of either the excitation or the 
response of the structure. Time-frequency analyses were performed by either short-time 
Fourier transform or wavelet transform. Soudkhah, M. (2010) examined the dynamic 
response of surface foundations on sandy soils under both forced and ground motion 
disturbance. Yao, M.M. (2010) used the direct method for modeling the soil and a tall 
building together and studied energy transferring from soils to buildings during earthquakes, 
which is critical for the design of earthquake resistant structures and for upgrading existing 
structures. Ahearn, E.B. (2010) studied the dynamic effects of wind-induced vibrations on 
high-mast structures in Laramie, WY, and proposed several retrofits that increase the 
aerodynamic damping, thereby reducing vibrations. 
 
The ground vibration induced by earthquake ground motions is a complicated dynamic 
problem due to the involvement of a number of factors along the paths of wave propagation, 
including the load generation mechanism, the geometry and location of tunnel structures, the 
irregularity of soil layers, etc. Previously, many research projects on ground-borne vibrations 
due to earthquakes were conducted by field measurement and empirical or semi-empirical 
prediction models. These studies provide practical reference for solving related problems. 
However, most of these studies were performed for a specific condition, thereby suffering 
from the lack of generality. 
 
Assumptions 
1. The high tower building-foundation equivalent system moves only in the y*- z* plane. 
2. The wind effect is identified as randomly fluctuating wind loads in horizontal direction. 
3. Uy(t), UZ(t) are random ground motions of earthquake in horizontal and vertical 

directions y and z. 
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4. The high tower building and its foundation are assumed as rigid bodies. 
5. The soil kind under the foundation is assumed as a sandy clay : 

(a) Specific weight 3
B kp/m 1200 . 

(b) Dynamic modulus of elasticity 36
d m/kp 10*6.30E  . 

(c) Vertical wave velocity (compression direction) sm 500vS /  (Lorenz, H. 1955). 

6.   The angular velocities ),(),( ** t t 1o  and )t(*
2 are very small (<<1). 

7.   The equivalent spring stiffness  k k EHH ,, and vk are linear. 
8.   The equivalent damping coefficients  r r EHH ,, and vr are linear. 
9.   The density of building 2  is taken as 0.1 that of the foundation. 
10. The air friction was not considered. 
11.  The place pressure factor pC can be replaced through the average load factor of total 

building. 
12.  The spectral power density )(

11UUS is independent on the cartesian coordinates z, y. 
13.  The wind velocity distribution along the height of the building can be described with 

the equation 

)()()( HU
H
zzU  . 

14. The cross spectral power density )(
21UUS can be represented through the coherence 

spectrum of the wind      velocity ),(' tzU 1 and ),(' tzU 2 :  

)](.)([)()( 
22112121 UUUU

2
UU

2
UU S  SS  

 
2. Derivation of system equations using D’alembert’s principle 
 
The model of the problem to be considered is schematically shown in Fig. 1. This model 
describing the vibrations of high-tower building and its foundation with general-type 
equivalent passive springs and dampers, rigid bodies, and some ideal constraints like linear 
springs and dampers under the effect of randomly fluctuating wind loads and the excitation of 
earthquake ground motions. In setting up the equations of motion of the equivalent system in 
Fig. 1, it should be born in mind that the geometric, elastic, and kinetic relations of both high 
tower building and its foundation must be derived. Moreover the external excitation of wind 
loads should be prepared.  
 
2.1   Foundation differential equations of motion  
 
Figure 2 shows the free body diagram of foundation with its accompanied vibrating soil. 
. 
2.1.1 Geometric relations of tall building and its foundation 
 
For the linearization of derived equations, let   and 21o  , << 1. Geometric relations of 
building’s foundation are 

)(..)()( *** tb50tztz ooC  , )(..)()( *** tb50tztz ooD  , )(..)()( *** tb50tztz 11E  , 
)t(.b5.0)t(z)t(z *

1
*
1

*
F   , 

)())(cos.(.)()( **** tzt1c50tztz o2o2  , )()( ** tt o2  , )()( ** tyty oC  , 
)(..)()(sin..)()( ***** tc50tytc50tyty 2o2o2  , )()( ** tyty oD  , )()( ** tyty 1E  , and )()( ** tyty 1F 

     
Rearranging the previous geometric relations leads to the following form  
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)t(.b5.0)t(z)t(z *

2
*
2

*
C  , )t(.b5.0)t(z)t(z *

2
*
2

*
D  , )t(.b5.0)t(z)t(z *

1
*
1

*
E   , 

)t(.b5.0)t(z)t(z *
1

*
1

*
F   

)t(.c5.0)t(y)t(y *
2

*
2

*
C  , )t(.c5.0)t(y)t(y *

2
*
2

*
D  ,  )t(y)t(y *

1
*
E  , and )t(y)t(y *

1
*
F   

   }        (1) 
 
2.1.2  Elastic relations of building’s foundation 
 
Elastic relations of building’s foundation have the form 

)]t(z)t(z.[r)]t(z)t(z.[kF *
C

*
EV

*
C

*
EVV1   , )]t(y)t(y.[r)]t(y)t(y.[kF *

C
*
EH

*
C

*
EHH1    , 

)]t(z)t(z.[r)]t(z)t(z.[kF *
D

*
FV

*
D

*
FVV2   , )]t(y)t(y.[r)]t(y)t(y.[kF *

D
*
FH

*
D

*
FHH2   ,

)]t(U)t(y.[r)]t(U)t(y.[kF y
*
1EHy

*
1EHEH

  , )]t(U)t(z.[r)]t(U)t(z.[kF z
*
1EVz

*
1EVEV

   
 }          (2) 

)t(.r)t(.kT *
1EK

*
1EKEK    

 
2.1.3 Kinetic relations of building’s foundation 
 
Applying Newton’s second law for the forces in z- and y-directions and the moments about 
s1 results in 

  EVV2V1
*
11z FFF)t(z.mF  ,   EHH2H1

*
11y FFF)t(y.mF   

)(.).)()(cos...)(cos...)(. *** tTb50FF( tTtb50Ftb50FtJM EKV1V2EK1V21V1111s    
 }          (3)
  
2.2 Differential equations of motion of high tower building 
 
Figure 3 shows the free body diagram of high tower building with its forces and moments 
affecting on it. 
 
2.2.1 Aeroelastic relations of wind excitation 
  
Nowadays, the study of the behavior of a structure subjected to hydro or aerodynamic 
loadings forms an integral part of tasks allocated to engineers. The effect of wind must be 
taken into consideration during the design phase of tall buildings. The mechanism of wind 
loads acting on a building is very complex. Substantial works have dealt with this problem. In 
civil engineering and construction of tall buildings, the assessment of wind loads is required 
to check the resistance of components of the construction and coating. In recent years, the 
methods proposed by scientists in this field are constantly being updated. The institutions of 
global standardization are thus forced each time to review the standards that are in force. 
Under the effect of wind, a building oscillates according to both directions parallel and 
perpendicular to the flow and in a torsional mode. Notwithstanding its enormous fascination, 
wind loading is in fact a parasitic effect, and mostly an obstacle in the way of designing 
structures for their primary intended use. Without wind, structures – particularly large ones – 
would probably be a lot easier to design and cheaper. 
 
Dynamic wind  pressures  acting  on  buildings  are  complicated  functions  of both  time  and 
space. The wind load per unit area has the form 

)t,z(q.C)t,z(W p  and   )t,z( U
2
1)t,z(q 2  
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)]t,z(U)t,z(U).z(U2)z(U[ .
2

.C)]t,z(U)z(U.[
2

.C)t,z(U.
2

.C)t,z(W
2''2

p
2'

p
2

p 








  

     

 
Fig. 1.  Equivalent system of tall building and its foundation 

 

 
Fig. 2.  Free body diagram of foundation with its accompanied vibrated soil  
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Fig. 3 Free body diagram of the high tower building 

 

),()(),().(.)(..),( '' tzW zWtzUzU.C zU 
2

CtzW p
2

p      

           
The total turbulent wind force in y*-direction as a function of time is 

  
c

0

c

0
p dz tzUzU.C  dz tzWtW ),().(.),()( ''       

           (4) 
The total turbulent wind moment as a function of time is 

 
c

0 22W dz tzWt
2
bt

2
cztM ),())].(sin)(cos([)( '**      

   

 
c

0
dz tzW

2
cz ),().( '  

c

0

'
p dz )t,z(U).z(U..C ).

2
cz(      (5) 

 
2.2.2 Elastic relations of high tower building 
 
Elastic relations of high tower building have the form 

)]t(z)t(z.[r)]t(z)t(z.[kF *
E

*
CV

*
E

*
CVV1   , )]t(y)t(y.[r)]t(y)t(y.[kF *

E
*
CH

*
E

*
CHH1    

)]t(z)t(z.[r)]t(z)t(z.[kF *
F

*
DV

*
F

*
DVV2   , )]t(y)t(y.[r)]t(y)t(y.[kF *

F
*
DH

*
F

*
DHH2    

 }          (6) 
            
2.2.3 Kinetic relations of high tower building 
 
Applying Newton’s second law for the forces in z and y-directions and also the moments 
about s2 results in 
 
  V2V122z FFtzmF )(. * , )()(. * tWFFtymF H2H122y    

  )](cos.)(sin..[)(. *** t
2
bt

2
cFtJM 22V1222s  )](sin.)(cos..[ ** t

2
bt

2
cF 22H1    
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)](cos.)(sin..[ ** t
2
bt

2
cF 22V2  )()](sin.)(cos..[ ** tMt

2
bt

2
cF W22H2  }

  (7)  
The previous equation can be linearized in the following form 

  ])(..[)](..[ **

2
ct

2
bFt

2
c

2
bFM 2H12V12s )(])(..[)](..[ ** tM

2
ct

2
bFt

2
c

2
bF W2H22V2   

 
2.2.4  Deriving the system’s differential equations of motion  
 
2.2.4.1  Application of the geometric relations of the foundation 
 
Substitute from Eqs. 1 in Eqs. 2 of the elastic relations of foundation free body diagram 

)](..)()(..)(.[)](..)()(..)(.[ ******** tb50tztb50tzrtb50tztb50tzkF 2211V2211VV1     
)](.)()(.[)](.)()(.[ ****** tc50tytyrtc50tytykF 221H221HH1       

      
)](..)()(..)(.[)](..)()(..)(.[ ******** tb50tztb50tzrtb50tztb50tzkF 2211V2211VV2    

 }          (8) 
)](.)()(.[)](.)()(.[ ****** tc50tytyrtc50tytykF 221H221HH2    

 
2.2.4.2  Application of the elastic relations of the foundation 
 
Substitute from Eqs. 2 of foundation’s elastic relations in Eqs. 3 of its kinetic relations results 
in     

)()(.)(.)().()()().()(. ***** tUrtUktzr2tzr2rtzk2tzk2ktzm zEVzEV2V1VEV2V1VEV11
     

     
)().()(.)(.)().()(. ***** tyr2rtcktyk2tyk2ktym 1HEH2H2H1HEH11       

    }      (9) 
)(.)(.)(.)(. ** tUrtUktcrtyr2 yEHyEH2H2H

       
           

)(...)(]...[)(...)(]...[)(. ***** trb50trb50rtkb50tkb50ktJ 2V
2

1V
2

EK2V
2

1V
2

EK11    
 
2.2.4.3   Application of the geometric relations of the building 
 
Substitute from Eqs. 1 of geometric relations in Eqs. 6 of elastic relations of the building 

)](..)()(..)(.[)](..)()(..)(.[ ******** tb50tztb50tzrtb50tztb50tzkF 1122V1122VV1    
     

)](.)()(.[)](.)()(.[ ****** tc50tytyrtc50tytykF 221H221HH1       
     }     (10) 

)](..)()(..)(.[)](..)()(..)(.[ ******** tb50tztb50tzrtb50tztb50tzkF 1122V1122VV2    
     

)](.)()(.[)](.)()(.[ ****** tc50tytyrtc50tytykF 221H221HH2        
 
2.2.4.4    Application of the elastic relations of the building 
 
Substitute Eqs. 10 of building’s elastic relations in Eqs. 7 of its kinetic relations leads to the 
following differential equations    
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2.2.4.5   Arranging the differential equations of motion 
 
The differential equations of motion of both tall building and its foundation can be 
summarized in the form 
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3  Derivation of system equations using Lagrange’s method 
 
The previous obtained system differential equations 12 of motion can be verified using 
another derivation method, like Lagrange’s method using the following Lagrangian 
Differential Equation  
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QK : General forces, Fi : External forces, and i : Velocity 
 
3.1  Lagrangian function 
 
(a)  Kinetic energy of the total equivalent system 
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(b) Elastic potential energy of the total equivalent system 
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(c) Lagrangian function 
 

Using Eqs. 1 and 14-15 to obtain the following Lagrangian function 
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3.2  Rayleigh’s dissipation function 
 
The Rayleigh’s dissipation function can be derived as 

)()]()([)]()([ *** tr
2
1tUtyr

2
1tUtzr

2
1r

2
1 2

1EK
2

y1EH
2

z1EV
61n

2
66  



  

     2*
2

*
2

*
1H

2*
2

*
2

*
1

*
1V )]t(.c5.0)t(y)t(y[r

2
1)]t(.b5.0)t(z)t(.b5.0)t(z[r

2
1

   

 2*
2

*
2

*
1H

2*
2

*
2

*
1

*
1V )]t(.c5.0)t(y)t(y[r

2
1)]t(.b5.0)t(z)t(.b5.0)t(z[r

2
1

 

         (17) 
3.3  General external forces 
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3.4  Deriving the differential equations of motion 
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Substitute from the equations of case (a) in Eq. 13, the first differential equation of motion 
can be obtained       
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(b) Case of )(* tyq 12   
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Substitute from the equations of case (b) in Eq. 13, the second differential equation of motion 
can be obtained 
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(c) Case of )(* tq 13   
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Substitute from the equations of case (c) in Eq. 13, the third differential equation of motion 
can be obtained 
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(d) Case of )(* tzq 24   
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Similarly, the fourth differential equation of motion can be obtained 
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(e) Case of )(* tyq 25   
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Similarly, the fifth differential equation of motion can be obtained 
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Similarly, the sixth differential equation of motion can be obtained    
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Equations 18-23 can be written in the following matrix form  
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3.5  Normalization of the system differential equations of motion 
 
The system differential equations of motion of the high tower building with its foundation can 
be presented in a dimensionless form using the following quantities 
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where rad 1   and  cm 1 cm,  1 y z ooooo  .  
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Applying the time normalization through the following transformations  
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Therefore the differential equations of motion will be written in the following dimensionless 
form 
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4  Analytical solutions using the general modal analysis method 
 
4.1 Eigen value problem 
 
4.1.1 Homogeneous differential equations without damping 
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Assume that the exponential solutions of Eqs. 26 have the form 
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Applying the solutions of Eqs. 27 in Eqs. 26 leads to the general eigen value problem 
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           (28) 
Using equation 3 one can obtain 12 eigen values ),,,,,( 654321        and 6 eigen 
vectors ),,,,,( 654321 x x x x x x  . 
 
4.2 Modal matrix 
 
The modal matrix has the form 
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4.3  Decoupling of the system differential equations 
 
The transformation of coordinates can be carried out using the equation 
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and the system of the vibration differential equations will has the form 
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Where  I  MT  * , ]*  D [2 diag.  RT , ]* 2T [ diag.  K  , and  Q ][ diag.  (t)F 2T  *  
 
When the damping forces of the equivalent system are smaller than its elastic restoring forces, 
then the coupled terms of the transformed damping matrix can be neglected without any great 
error. The decoupled differential equations of the system will have the form 
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The general external excitations of the system are 
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Applying the total turbulent wind forces W(t) in y-direction and the total wind moments 
MW(t) on the previous equations. 
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The decoupled system of differential equations can be presented in the following form 
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From the previous equations, one can obtain the following imaginary transformation 
functions 
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A dynamical system with known properties responds to a dynamical loading in a known 
manner, provided the time-description of the loading is available a priori. Such description is 
however not possible in case of the excitations due to earthquake ground motions or 
fluctuating wind loads. Therefore, the safety of a structural system has to be ensured by 
stochastic modeling of these motions for perceived seismic hazard at the site of the system 
and by predicting the structural response in probabilistic sense with the help of well-known 
concepts of random vibration theory. This theory estimates the statistical variations in the 
peak structural response due to possible variations in the time-description of the excitation 
(there may be several `different looking' time-histories corresponding to a given 
characterization of the excitation). The classical random vibration theory makes use of the 
frequency distribution of input energy as obtained from the Fourier Transform of the 
excitation. However, since Fourier Transform gives only an `average' energy distribution in 
an excitation with time-evolving structure, this theory is insufficient for those cases where the 
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non-stationary processes cannot be modeled as stationary or quasi-stationary. As a natural 
extension to double Fourier Transform for such processes is not considered to be practical, a 
large amount of effort has been devoted to modeling a (slowly-varying) non-stationary 
process through modulating function-based power spectral density function (PSDF). The auto 
power spectral density function of the response as a result of random wind and earthquake 
excitations with respect to general coordinates has the form 
 





6

1s
ffsr

6

1r
qq srii

S H H  S )()()()( *        

           
  )()()(......)()()()()()()( ***

6ii f612111qq S H HS H HS H H  S  

  ......)()()(......)()()()()()( ***
6f622212 S H HS H HS H H  

)()()(......)()()()()()( ***   6666 ff66f26f16 S H HS H HS H H   
           (35) 

The cross correlation function of excitation functions with respect to general coordinates is 
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The cross and auto power spectral density functions of excitation functions are  
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The excitation functions can be represented as       
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The cross correlation function of excitations is 
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The cross power spectral density function of excitation functions has the form 
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The differential equations of motion can be written in the form 
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The cross power spectral density function of the vibration response with respect to general 
coordinates is 
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The cross power spectral density function of the vibration response with respect to original 
coordinates is 
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Substitute from Eq. 42 in Eq. 46 results in 
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Substitute from Eq. 40 in Eq. 44, one can obtain the cross power spectral density function of 
the response with respect to original coordinates of the form 
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and the auto power spectral density function of the response with respect to original 
coordinates of the form  
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4.4  The power spectral density function of the excitations 
 
4.4.1  Correlation function of the excitations  
 
The correlation function of the excitations with respect to general coordinates is 
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Substitute from Eq. 32 in Eq. 47 results in  
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Since the wind velocity U(z,t) and the underground excitations (t) ,t  )( are uncorrelated, the 
following correlation functions must have the values of zero. 
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4.4.2   The power spectral density function of the excitations 
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The cross power spectral density function of the excitations with respect to general 
coordinates is 
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Substitute from Eqs. 48 and 49 in Eq. 50 results in      
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The wind velocity )(zU  depends on the height of the building, according to the following 
equation 
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Using Eq. 52 in Eq. 51 
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These double integrals can be described as Aerodynamic Amplification Functions 
(Transformation Functions) are   
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Auto power spectral density function of the excitation with respect to the first general 
coordinates 
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4.5  Complex transformation matrix with respect to general coordinates 
 
Fourier transformation of the vibration response and excitation has the following form 
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and its absolute value is  ...,6 2, 1,n   ,   
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4.6  Response power spectral density function with respect to general coordinates 
 
Cross correlation functions of the response with respect to general coordinates have the form 
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The response power spectral density function with respect to general coordinates is 
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Auto power spectral density function for n-eigen form with respect to general coordinates is 
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Where the mechanical amplification functions (Transformation Functions) are 
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and the Aerodynamic Amplification Functions (Transformation Functions) are shown in Eqs. 
54 
 
4.7  Response power spectral density function with respect to original coordinates 
 
Cross correlation functions of the response with respect to original coordinates have the form 







2T

2T
sr

T
XX dt tX tX

T
1  R

sr

/

/

)()(lim)(  
 




2T

2T
ji

6

1j
sjri

6

1i
T

dt tq tq
T
1  

/

/

)()(lim  

   )()()(lim
/

/

 





jiqq

6

1j
sjri

6

1i

2T

2T
jiT

6

1j
sjri

6

1i

R dt tq tq
T
1     (60) 

The response power spectral density function with respect to original coordinates is 
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4.8  Mean square value response with respect to original coordinates 
 
Mean square value of the random vibration response with respect to original coordinates can 
be written as 
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5 Conclusions 
 
This paper outlines a mathematical model describing the vibrations of high-tower buildings 
and its foundations with general-type equivalent passive springs and dampers, rigid bodies, 
and some ideal constraints under the effect of randomly fluctuating wind loads and the 
excitation of earthquake ground motions. Two derivation methods of the equivalent system’s 
differential equations have been considered, namely D’alembert’s principle and Lagrange’s 
method, which verified the acceptability of the developed equations of motion. Following 
conclusions can be withdrawn: 
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 The mathematical model with 6 degrees of freedom presented in the present paper can be 
used to investigate the effect of both wind and earthquakes loading. 

 Analytical solution of the free vibrations of tall building and its foundation using the 
general modal analysis method has been performed. 

 Analytical solution of forced vibrations of tall building and its foundation has been 
developed, through the correlation function (time domain) and the power spectral density 
function (frequency domain) of system response with respect to general and also original 
coordinates. 

 Without wind and earthquakes, structures – particularly large ones – would probably be a 
lot easier to design and cheaper. 

 Random vibrations of building’s foundation subjected to seismic excitations of earthquake 
ground motions and also randomly fluctuating wind pressure fields acting on a building 
surface are analyzed.     
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Appendix 

FFF V.m   , Foundation weight gmW FF . , Lorenz, H. (1955) calculated the weight of the 
accompanied vibrating soil with the foundation using the equation 
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Fig. 4 Foundation with its accompanied vibrating toned sand 
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Vertical embedding damping constant: the damping constant of radiation is Sdb VEr /  
Mass of the high tower: the density of high tower can be assumed as 1/10 of that of the foundation, i.e. 
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