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Abstract 

 

Due to difficulties and high costs of experimental research, numerical studies can be an appropriate 

alternative for experimental methods. in this current research capability of the finite element method 

for predicting concrete behaviour under static loading conditions is evaluated using explicit dynamic 

analysis in ABAQUS (2014). The concrete damaged–plasticity (CDP) model proposed by Lubliner and 

collaborators is employed herein for the plain concrete, and elasto-plastic material models are 

employed for the steel reinforcement. A perfect bond is assumed between the reinforcements and 

concrete, whereby the bond–slip behaviour, as well as damage along crack patterns, are modelled 

through concrete damage. First, the proposed method is presented and then is validated. The proposed 

methodology has a wide range of applicability, and displays fast solution time while providing 

extensive and accurate information on structural behaviour. A high level of accuracy is demonstrated in 

various comparisons between analytical or test and analysis results of load displacement, crack 

patterns, failure type when subjected to static or monotonic loading. 

 

© 2021 Institution of Engineers, Bangladesh. All rights reserved. 
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1. Introduction 

Finite element method (FEM) is a computational approach which is considered to determine 

the approximate solutions of boundary value problems (Hutton and Wu, 2004). Finite element 

(FE) method is one of the most widely used methods in structural engineering whose ability 

and application have been studied for many years. Buyukozturk (1977) was one of the first 

researchers to develop a method to consider the effect of reinforcements on the finite element 

analysis of concrete structures. Then, several mathematical models to simulate the material 

and also interactive behaviors as the sources of nonlinearities in concrete structures for FEM 

analysis were extended (Vecchio 1989). Reinforced Concrete (RC) is a widely used 

construction material for structures such as tall buildings, bridges, tunnels, dams and military 
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shelters are built with RC elements. Studying the behavior of RC members under static load 

still is a fundamental research issue in the field of structural engineering. Experimental testing 

and numerical modelling of RC elements are always important to the researchers. The past 

studies on the RC members under static or monotonic loading indicate that most of previous 

researches have been carried out either experimentally or modeled numerically or in some 

cases both the approaches have been followed side by side. Since experimental testing is 

time-consuming and expensive, numerical approach like finite element (FE) simulations can 

be a valuable alternative method for experimental tests. Due to the complexity of the behavior 

and the nature of RC members, determination of the capable finite element model which can 

predict and calculate the exact responses is very difficult. There are several parameters that 

affect the analysis results of any RC member. Many studies exist (Zhang et al. 2016, Tong et 

al. 2017 and Richard et al. 2015) about the role of each of these parameters.  

 

Therefore, proposing a comprehensive FE method which is accurate and simple is the main 

aim of this study. To reach this goal, numerical study of RC members like beam, column and 

frame are done against static and monotonic loading condition. A reliable finite element (FE) 

modelling of RC beam and column is developed and analyzed using ABAQUS (2014). 

However, to confirm the reliability of material models and the overall performance of the 

numerical model selected for determining the response of a member, validation against 

experimental/analytical results is required. Hence, FE models are validated against the test 

data found from the recent works as well as analytical results found from different literature 

for static load. Initially, for FE validation of RC beams under static load, six different types of 

RC beam are considered. Three of these are validated against analytical results and rest three 

against the test results of Saatci (2007).  Moreover, one column is validated against analytical 

results and a frame is validated against test results of Güner (2008).   

 

2. Finite element modelling 

ABAQUS is a versatile powerful finite element software which is utilized for simulation of 

complicated static as well as dynamic phenomena. The basic difference between static and 

dynamic analysis is equilibrium of external and internal forces. Any dynamic analysis will 

become static analysis if inertia and damping forces of structure become close to zero. The 

inertia and damping force of any structure will become very small when the rate of 

displacement of structure is very small. Again, the rate of displacement will be very small if 

mass of structure is very high but the mass of structure is a part of external load. To avoid this 

extra self-weight problem, the structure should be modeled without gravity action. For quasi-

static analysis, downward displacement is applied and mass scaling technique is used.  

 

2.1  Analysis method 

The equation of motion can be solved using ABAQUS (2014) by performing explicit or 

implicit analysis. Explicit analysis is the default option in ABAQUS (2014) and widely used 

as the implicit analysis approach is computationally expensive for problems that needs to be 

discretized into small finite elements. The biggest difference between the two procedures lies 

in the manner in which the nodal accelerations are computed. In the implicit procedure a set 

of linear equations is solved by a direct solution method. The computational cost of solving 

this set of equations is high when compared to the relatively low cost of the nodal calculations 

with the explicit method. 

 

2.2  Element type 

Three dimensional eight noded solid elements (C3D8R) was utilized for modelling of 

concrete. two noded truss elements (T3D2) was used in this study for simulation of rebar. 
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2.3  Concrete and rebar interaction 

Full bond between the steel and concrete is achieved by embedded techniques. This technique 

allows the placement of the reinforcement in any layout such that the displacements of the 

reinforcing bars are compatible with those of the concrete element. The support and load are 

applied on beam or column by steel plate of 25 mm thickness. Contact between loading plate 

and solid concrete elements are achieved by using surface to surface contact (Explicit) 

algorithms using penalty method. The element size of 25 mm is used for modelling of 

concrete beam/column, reinforcement, steel supports and loading plate which are obtained 

from mesh sensibility analysis as discussed in following sections. 

 

2.4  Material modeling  

2.4.1  Concrete 

Concrete Damage Plasticity (CDP) model which was proposed by Lubliner et al. (1998) and 

elaborated by Lee and Fenves (1989), is used for simulation of concrete.  

 

In Figure 1 (a), 𝜀𝑐
𝑐ℎ and 𝜀𝑜𝑐

𝑐ℎ are the crushing and elastic undamaged components of strain; 

𝜀𝑐
pl

and 𝜀𝑐
𝑒𝑙  are the plastic and elastic damaged components. In Figure 1 (b),  𝜀𝑐

𝑐𝑘 and 𝜀𝑜𝑡
𝑒𝑙  are 

the cracking and elastic undamaged strain components; 𝜀𝑡
𝑝𝑙

and 𝜀𝑡
𝑒𝑙 are the plastic and elastic 

damaged components. 

 

 
Fig. 1.  Assumed uniaxial model of concrete behaviour (Lee and Fenves, 1998) (a) is linear,𝜎𝑐(1) =

𝐸0𝜀𝑐, reaching 0.4𝑓𝑐𝑚; second (ascending) segment (in between 0.4 𝑓𝑐𝑚 and 𝑓𝑐𝑚) is quadratic (CEB-

FIP, 2010): 

 

𝜎𝑐(2) =
𝐸𝑐𝑖

𝜀𝑐
𝑓𝑐𝑚

− (
𝜀𝑐

𝜀𝑐𝑚
)

2

1 + (𝐸𝑐𝑖
𝜀𝑐𝑚
𝑓𝑐𝑚

− 2)
𝜀𝑐

𝜀𝑐𝑚

𝑓𝑐𝑚                                                                                                     (1) 

 

𝐸𝑐𝑖 is the modulus of deformation of concrete for zero stress, given by 𝐸𝑐𝑖 =

10000𝑓𝑐𝑚
1 3⁄

and 𝐸0 = (0.8 + 0.2 𝑓𝑐𝑚 88⁄ ) 𝐸𝑐𝑖(in MPa) (CEB-FIP, 2010). In the initial linear 

branch, 𝐸0  is the secant modulus that corresponds to 0.4  𝑓𝑐𝑚 stress. Third (descending) 

segment is given by: 

 

𝜎𝑐(3) = (
2 + 𝛾𝑐𝑓𝑐𝑚𝜀𝑐𝑚

2𝑓𝑐𝑚
− 𝛾𝑐𝜀𝑐 +

𝜀𝑐
2𝛾𝑐

2𝜀𝑐𝑚
)

−1

                                                                                     (2) 
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𝛾𝑐 =
𝜋2𝑓𝑐𝑚𝜀𝑐𝑚

2 [
𝐺𝑐ℎ
𝑙𝑒𝑞

− 0.5𝑓𝑐𝑚 (𝜀𝑐𝑚(1 − 𝑏) + 𝑏
𝑓𝑐𝑚
𝐸0

)]
2                𝑏 =

𝜀𝑐
𝑝𝑙

𝜀𝑐
𝑐ℎ

                                                (3) 

 

𝐺𝑐ℎ  is the crushing energy per unit area (Krätzig and Pölling, 2004) and 𝑙𝑒𝑞  is the 

characteristic length, which depends on the mesh size, the type of finite element and the crack 

direction. Based on experimental observations, 𝑏 = 0.9  can be initially assumed. After 

calculating the damage variables, the average value of b is obtained. 

 

Regarding tensile behaviour, the ratio between tensile stress 𝜎𝑡(𝑤)(for crack width w) and 

maximum tensile strength 𝑓𝑡𝑚, is given by (Hordijk 1992): 

 
𝜎𝑡(𝑤)

𝑓𝑡𝑚
= [1 + (𝑐1

𝑤

𝑤𝑐
)

3

] 𝑒
−𝑐2

𝑤
𝑤𝑐 −

𝑤

𝑤𝑐

(1 + 𝑐1
3)𝑒−𝑐2                                                                         (4) 

 

In Eq. (4), 𝑐1 = 3, 𝑐2= 6.93 (Hordijk, 1992), and 𝑤𝑐  is the critical crack opening. Eq. (5) 

shows that 𝜎𝑡(0) = 𝑓𝑡𝑚 and 𝜎𝑡(𝑤𝑐) = 0. Therefore, 𝑤𝑐 can be considered as the fracture crack 

opening. Eq. (5) (Hordijk, 1992) relates 𝑤𝑐 with the tensile strength and fracture energy GF 

per unit area: 

 

𝑤𝑐 = 5.14𝐺𝐹 𝑓𝑡𝑚⁄                                                                                                                                   (5) 

 

According to CEB-FIP (2010), GF (N/mm) can be calculated as 

 

𝐺𝐹 = 0.073𝑓𝑐𝑚
0.18                                                                                                                                     (6) 

 

In Eq. (6), 𝑓𝑐𝑚 is expressed in MPa. The ratio between crushing and fracture energies can be 

assumed proportional to square of the ratio between compressive and tensile strengths (Oller, 

1988): 

 

𝐺𝑐ℎ = (
𝑓𝑐𝑚

𝑓𝑡𝑚
)

2

𝐺𝐹                                                                                                                                     (7) 

 

In the descending segment of the tensile stress-strain curve as shown in Figure 1(b), the strain 

can be obtained in terms of the crack opening from the following kinematic relation: 

 

𝜀𝑡 = 𝜀𝑡𝑚 + 𝑤 𝑙𝑒𝑞⁄                                                                                                                                    (8) 

 

Tensile and compressive damage functions are derived as follows:  

 

𝑑𝑐 = 1 −
1

2 + 𝑎𝑐
[2(1 + 𝑎𝑐)exp(𝑏𝑐𝜀𝑐

𝑐ℎ) − 𝑎𝑐  𝑒𝑥𝑝(−2 𝑏𝑐𝜀𝑡
𝑐ℎ)]                                                  (9) 

𝑑𝑡 = 1 −
1

2 + 𝑎𝑡
[2(1 + 𝑎𝑡)exp(−𝑏𝑡𝜀𝑡

𝑐𝑘) − 𝑎𝑡  𝑒𝑥𝑝(−2 𝑏𝑡𝜀𝑡
𝑐𝑘)]                                             (10) 

 

Coefficients 𝑏𝑐  and  𝑏𝑡 can be obtained from Eq. (11) and coefficients 𝑎𝑐 = 7.87 and  𝑎𝑡 = 1.  
 

𝑏𝑐 =
𝑓𝑐𝑜𝑙𝑒𝑞

𝐺𝑐ℎ
(1 +

𝑎𝑐

2
)                               𝑏𝑡 =

𝑓𝑡0𝑙𝑒𝑞

𝐺𝐹
(1 +

𝑎𝑡

2
)                                                      (11) 
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The parameters based on failure criteria used in FE analysis is mentioned in Table 1. 

 
Table 1 

Parameters used for failure criteria of CDP model (Vermeer and de Borst, 1984) 
 

Kc Ψ (o) fbo/fco Ԑ 

0.70 32 1.16 0.1 

 

2.4.2  Steel 

Two different idealizations, shown in Figures. 2 (a) and (b), are commonly used in FE 

modelling of reinforcement depending on the desired level of accuracy. The first idealization 

neglects the strength increase due to strain hardening as shown in Figure 2 (a).  In several 

instances it is necessary to evaluate the steel stress at strains higher than yield to more 

accurately assess the strength of members’ at large deformations. In this case more accurate 

idealizations which account for the strain hardening effect are required as shown in Figure 2(b 

(Limkatanyu and Spacone, 2003). In the present analysis elasto-plastic material model is 

used. 

 

 
Fig. 2.  Idealizations of the steel stress-strain curves of steel reinforcement (a) linear elastic, perfectly 

plastic and (b) elasto-plastic or bilinear (Limkatanyu and Spacone, 2003). 

 

 
Fig. 3.  Mid span deflection of beam at peak load Vs number of elements 

 

2.4.3  Application of load 

Reaction force between contact surface of the beam or column and loading plate is considered 

as the stiffness force i.e., static load of the beam or column.  Load is evaluated by applying 

downward loads or displacements. Load is gradually increased by applying a downward 

vertical displacement at the midpoint of beam or top of the column.  The maximum load 
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which the structure can sustain is measured and identified as the maximum capacity of the 

member.  

 

2.5  Mesh sensitivity analysis for static load 

Mesh convergence studies is conducted to determine the optimum FE mesh size that provides 

relatively accurate solution with low computational time. To do so, the RC beam mentioned 

in Section 3.2.2 with 8 mm shear reinforcement at 150 mm c/c is considered. Three type of 

mesh sizes 50 mm, 25 mm and 10 mm are used here to find out the optimum mesh size.  

 

It is observed from Figure 3 that both 25 mm and 10 mm mesh size provide very close 

displacement value at peak load. But, 10 mm mesh size require larger number of elements for 

analysis as a result computation time increases approx. by 20 times than 25 mm mesh size.  

Hence, mesh size of 25 mm is considered as optimum for static analysis.  

 

3. Validation of proposed method 

Three case studies are investigated for validation of proposed FE model and in each case the 

capability of model in specific condition is evaluated. In the first case, FE model is evaluated 

against different stages of loading on RC beam comparing with theoretical result. In the 

second case, FE model is evaluated in condition of stirrup change against analytical results 

and the test results of Saatci (2007). In the third case, tie bar changes of an RC column are 

considered for further evaluation of the proposed FE method against analytical results. In the 

final case, a frame is validated against test results of Güner (2008) under monotonic loading.  

 

3.1.1 Case study I: validation of FE model with gradually increasing static load on RC 

beam 

In this case study proposed FE method is checked by gradually increasing static load on RC 

beam to predict behavior in all load stages up to failure adopted from (Darwin et al. 2016). FE 

results are compared with those obtained from general mechanics of reinforced concrete 

structures. Figure 4 (a) shows the details of RC beam. This beam is supported by two steel 

plates and loaded at center by another steel plate. The dimension of supporting and loading 

plate is 25 x 150 x 250 mm. The beam has no shear reinforcement. The clear cover of the 

beam from center of flexure reinforcement is 50 mm.  

 

 
Fig. 4.  (a) Geometry details and (b) FE model of RC beam. 

 

Tables 2 and 3 indicate the material properties of reinforcement and concrete used in present 

FE analysis. Nonlinear properties of concrete are evaluated using CDP model.  

 
Table 2 

Properties of reinforcing bar 
 

Bar Size 

(mm) 

Density 

(kg/m3) 

Area 

(mm2) 

Yield strain x10-

3 (mm/mm) 

Yield stress 

(MPa) 

Ultimate 

strength (MPa) 

Young’s 

Modulus (GPa) 

Ultimate strain 

x10-3 (mm/mm) 

20 7800 510 2.07 414 620 200 80 
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Table 3 

Properties of concrete 
 

Density, ρ 

(kg/m3) 

Modulus of elasticity,  

E (GPa) 

Ultimate stress 

(MPa) 

Ultimate strain x 10-3 

(mm/mm) 

Modulus of rupture 

(MPa) 

2400 24.69 28 3.08 3.27 

 

3.1.2 Response of RC beam under different stages of loading 

a) Stress elastic and section uncracked: At low loads, as long as the maximum tensile stress 

in the concrete is smaller than the modulus of rupture, the entire concrete is effective in 

resisting stress.  In addition, the reinforcement is deformed the same amount as the adjacent 

concrete. At this stage, all stresses in concrete are proportional to stains. As a result, no 

tension cracks have developed. At this stage of analysis, transformed section as shown in 

Figure 5 (b) is used. 

Modular ratio, n = Es/Ec = 8 and moment of inertia of transformed section, I = 5.76x109 mm4. 

 

From ABAQUS (2014) results, it was found that up to 99.8 kN load, there is no flexural 

crack. The calculated moment under 99.8 kN load is, M =
PL

4
= 74.9   kN-m 

 

 
Fig. 5. (a) cross section and (b) transformed section of the RC beam. 

 

So, tensile stress at bottom fiber of concrete is, σt =
My

I
= 3.34 MPa which is almost equal to 

the modulus of rupture of concrete (3.27 MPa). So, theoretically no cracks have been 

developed at bottom fiber of RC beam. The stress block across the beam remains linear. 

 

 
Fig. 6. Crack pattern of RC beam at 107.8 kN load (elastic, cracked). 

 

b) Stress elastic and section cracked: When the load is further increased, the tensile strength 

of the concrete is soon reached and at this stage tension cracks develop. These cracks 

propagate quickly upward or close to the level of neutral plane, which in turn shifts upward 

with progressive cracking.  It is found that under 107.8 kN concentrated load first flexural 

cracks is appeared at the centre of the beam.  The calculated moment at midspan of the beam 

under 107.8 kN concentrated load is 80.9 kN-m (M =
PL

4
 ). 
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So, tensile stress at bottom fiber of concrete is, σt =
My

I
= 3.61 MPa  which is greater than 

modulus of rupture of concrete (3.27 MPa). So, theoretically cracks have been developed at 

bottom fiber of RC beam. The stress block across the beam remains linear. The crack pattern 

of the analyzed beam under 107.8 kN concentrated load at center of beam is shown in Figure 

6. Moreover, it is also found that tensile stress in concrete decrease due to development of 

tension crack at the bottom of concrete. 

 

At moderate loads, if the concrete stresses do not exceed approximately half of fc′ stresses and 

strains continue to be closely proportional. At this stage it is assumed that tension cracks have 

progressed all the way to the neutral axis. As per ACI 318-11, the depth of stress block is 

“kd” (𝑤ℎ𝑒𝑟𝑒, k = √(ρn)2 + 2ρn − ρn =0.332). So, depth of stress block “kd” is 191 mm.  

 

The compressive stress equal to 0.45 fc′ (12.60 MPa) at top face of beam is produced by the 

moment “Me”. So, Me =
1

2
𝑓𝑐kjbd2 = 154 kN − m. 

 

This moment will be produced when concentrated load at midspan of beam is 205 kN (P =
4M

L
).  The stress distribution and crack pattern under 205 kN concentrated load at mid-span of 

beam is shown in Figure 7. Stress across the beam remains linear and depth of the stress block 

obtained from FE analysis is 192.5 mm which is almost similar to the theoretical value of 191 

mm. 

 

 
Fig. 7.  (a) crack pattern and (b) stress distribution at mid-span under 205 kN load. 

 

c) Loading which produces nominal moment (section become plastic and cracked): When 

the load is still further increased, stresses and strains rise correspondingly and are no longer 

proportional. Then linear procedure is not applicable for stress calculation. As per ACI 318-

11, the stress block depth,  a =
ρdfy 

0.85fc
′ = 103 mm , so c =

a

β1
= 121 mm . Corresponding 

nominal moment, Mn is  

 

Mn = As fy (d −
a

2
) = 336 kN − m 
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This moment will be produced when concentrated load at midspan of beam is P =
4M

L
=

448 kN. The crack pattern and stress distribution under 448 kN concentrated load at midspan 

of beam are shown in Figure 8. 

 

 
Fig. 8.  (a) Crack pattern and (b) stress distribution at mid-span under 448 kN load. 

 

 
Fig. 9.  Load deflection of simulated RC beam. 

 

Load-midspan deflection plot of RC beam is shown in Figure 9. From load deflection plot, it 

is observed that the initial portion of the curve under service load of 99.8 kN is approximately 

elastic. Up to 205 kN load, the stress and strain remain linear. The simulated beam is failed 

under 450 kN peak load.   

 

3.1.3 Case study II: Validation of FE model in condition of stirrup change 

In this case study, the proposed FE method is validated based on different stirrups 

configurations. Initially, two RC beams have been validated against analytical result with 

similar boundary conditions and geometry, but with different numbers of stirrups.  Likewise, 

another three RC beams have been validated against the test results of Saatci (2007) with 

different numbers of stirrups.  
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3.1.4 RC beams with and without stirrup under static load verified with analytical results 

Shear reinforcements are varied for the two beams identified as SS0, has no shear 

reinforcement and SS1, has 10 mm diameter shear reinforcement spaced at 150 mm c/c to 

understand their effects on failure type. The beams are supported by two steel plates and 

loaded at two points by another two-steel plates. The dimension of both the supporting and 

loading plate is 25 mm x 50 mm x 250 mm. Both beams are reinforced by two no. 29 mm 

diameter reinforcing bars as bottom flexural reinforcement. Details of the RC beam with FE 

model is shown in Figure 10. Clear cover of beam is 37.5 mm.  

 

 

Fig. 10(a).  Geometry details. 

 

 
Fig. 10(b).  FE model of SS0 and (c) FE model of SS1 RC beam. 

 

Table 4 indicates the material properties of reinforcements.  Compressive strength of concrete 

is 37.5 MPa. 
Table 4 

Properties of reinforcing bars 
 

Bar Size 

(mm) 

Area 

(mm2) 

Density 

Ρ (kg/m3) 

Yield strain 

x10-3 (mm/mm) 

Yield stress 

(MPa) 

Ultimate 

strength (MPa) 

Young’s 

Modulus (MPa) 

Ultimate strain 

x10-3 (mm/mm) 

29 661 
7800 1.72 345 448 200000 80 

10 78 

 

The failure patterns of RC beam are basically two types, one is shear failure and another is 

flexural failure. If the flexural capacity of a beam is larger than the shear capacity, the beam is 

failed by shear failure. Shear capacity of a beam is provided by concrete of beam itself and 

additional shear reinforcement. The nominal moment capacity of the beam due to flexural 

reinforcement as per ACI 318-11 (2011) is,  𝑀𝑛 = 𝐴𝑠 𝑓𝑦 (𝑑 −
𝑎

2
) =150 kN-m [a =

As fy

0.85fc
′b

=

55.25 mm]  and corresponding applied load is 𝑃𝑛 =
4𝑀

𝐿
= 166 kN.  

For the beam with shear reinforcement (SS1), shear capacity is provided by both shear 

reinforcement and concrete itself. Total shear capacity of SS1 beam as per ACI 318-11 (2011) 

is, Vn = Vc + Vs = 2√fc
′ (psi) bwd +

Avfyd

s
= 288.54 kN 
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Fig. 11. Load-deflection plot of simulated RC beam with and without shear reinforcement 

 

Load–midspan deflection results of the RC specimens under two different stirrup conditions 

are shown in Figure 11. It is seen from the FE analysis that the maximum flexure capacity of 

the RC beam with 10 mm diameter shear reinforcement (SS1) is 184 kN which is less than 

288.54 kN shear capacity of this beam obtained from analytical result. So, SS1 beam has 

failed in flexure.  

 

Shear capacity of beam without shear reinforcement (SS0) as per ACI 318-11 (2011) is, Vn =

Vc = 2√fc
′ (psi)bwd = 90.8 kN which is provided by concrete only. It is also observed from 

FE analysis that the flexure capacity of SS0 beam is 122 kN which is greater than the shear 

capacity of SS0 beam. So, this beam has failed in shear. In general, FE results have 

reasonable agreement with analytical data.  

 

3.1.5 RC beams with varying stirrup verified against experimental results  

In the present section experimental load-deflection plots of RC beams tested by Saatci (2007) 

are considered for validation. Three simply supported RC beams with identical longitudinal 

reinforcement and varying shear reinforcement were used by Saatci (2007). All beams had the 

same amount of longitudinal reinforcement: two No. 30 (area = 707 mm2) steel bars placed 

with 37.5 mm clear cover at the bottom and top of the beam. The details of the tested RC 

beam are presented in Figure 12. 

 
Fig. 12. Details of RC beam tested beam by Saatci (2007). 

 

Shear reinforcements were varied for different beams to understand their effects on failure 

behaviour of beam. The type of shear reinforcement used in these tests were 8 mm reinforcing 

bar (area = 50 mm2). Details of shear reinforcement are presented in Table 5. 
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Table 5 

Transverse reinforcement ratios and stirrup spacing for beams 
 

Specimen Ratio of shear reinforcement Spacing of shear reinforcement (mm) 

MS0 no shear reinforcement - 

MS1 8 mm diameter shear reinforcement (0.1%) 300 

MS2 8 mm diameter shear reinforcement (0.2%) 150 

The concrete compressive strength of the tested beam was 50 MPa. Properties of reinforcing 

bars are given in Table 6.  
Table 6 

Properties of reinforcing bar 
 

Bar Size 

(mm) 

Area 

(mm2) 

Yield Strain x10-3 

(mm/mm) 

Yield Stress 

(MPa) 

Ultimate  

Strength (MPa) 

Young’s 

Modulus (GPa) 

Ultimate Strain 

x10-3 (mm/mm) 

30 707 2.5 464 690 200 80 

8 50 4.9 572 623 117 50 

 

  
(a) (b) 

 
(c) 

Fig. 13.  Load Vs deflection plots of beams (a) MS0, (b) MS1 and (c) MS2. 

 

Figures 13 (a) to (c) show the load versus mid-span deflection plots of RC beam found from 

experiment and FE analyses with three different stirrups spacing as mentioned in Table 5. The 

displacement is applied at mid-span of the beams by loading pad (bearing plate) and analyses 

have been executed by ABAQUS/Explicit (2014). Reaction force between contact surface of 

the beam and loading plate is considered as the stiffness force i.e., static load of the beam.  

Undulation is observed in both the experimental as well as in numerical load vs. deflection 
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plots because of the vibration created by tension crack during analysis. This phenomenon is 

also observed during flexural test of any RC beam.  

 

The FE response of all the beams is found to be very similar to the actual response viewed in 

the test. From Figures. 13 (a) to (b), it is also observed that the flexure capacity and 

displacement are increasing from beam MS0 to MS1 due to the increase of stirrup ratio. 

 
3.1.6 Case study III: Validation of FE model in condition of tie bars change 

In this case study, the proposed FE method is validated based on different ties configurations 

of two RC columns, one with tie (TS1) and another without tie (TS0). Both the columns are 

of 3.25 m long with cross-section of 400 mm x 400 mm with fixed base. The columns are 

reinforced by eight no. 35 mm diameter reinforcing bars as main reinforcement.  The clear 

cover from the center of main reinforcement to the outer surface of columns is 62.5 mm. In 

order to have deep insight of confinement effect and failure behavior, tie bars are varied for 

the two columns.  The type of tie bar used in this analysis are 12 mm reinforcing bar (area = 

113 mm2).  Properties of reinforcing bars is mentioned in Table 2 and compressive strength of 

concrete used is 43 MPa.  Figure 14 shows the geometry details of TS1 column and FE model 

of TS0 and TS1 column. 

 

  
Fig. 14.  (a) Geometry details and (b) FE model of RC column. 

 

Nominal capacity of axially loaded RC column is as per ACI Code (ACI 318-11, 2011), 

𝑃𝑁 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝑓𝑦𝐴𝑠𝑡 = 8753 kN 

 

PN depends on concrete compressive strength  (𝑓𝑐
′) , yield strength (fy), of longitudinal 

reinforcement, gross cross-sectional area of column (Ag) and area of longitudinal 

reinforcement (Ast). During numerical analyses in ABAQUS (2014) axial load is applied at 

top of the columns as downward displacement using 25 mm thick steel plate.  While applying 

the load, top of the columns is allowed to move downward where base of the columns is 

fixed. Mass scaling technique is used to reduce the time period of analysis.  The reaction 

force between contact surface of the column and loading plate is considered as the stiffness 

force i.e., axial load of the column. Axial force versus axial displacement plots of both the 

columns, without tie bar (TS0) and with 10 mm tie bars spaced at 400 mm c/c (TS1), obtained 

from present FE analyses is shown in Figure 15.    
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Fig. 15.  Load displacement plots of RC columns TS0 and TS1. 

 

 

 
Fig. 16.  Details of the RC frame experiment (Güner, 2008) and FE model. 

It is observed from load displacement that axial capacity of TS0 and TS1 columns obtained 

from FE analysis are 9018 and 10047 kN respectively. Moreover, axial displacement of TS0 

and TS1 column at failure are found to be 8.97 and 18.24 mm respectively. TS1 column 

shows larger displacements and higher capacity due to the presence of tie bars around the 
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longitudinal reinforcement.  So, it can be concluded that inclusion of tie bar can increase the 

axial capacity as well as axial displacement of any RC column.  

 

3.1.7 Case study IV: Validation of FE model of RC frame under monotonic load  

Numerical simulation of an RC frame under monotonic loading is validated comparing with 

the test results obtained from Güner (2008). The tested RC frame was two-storied single span 

planar frame. Front and side views of the tested frame are displayed in Figures. 16 (b) and (c), 

respectively. Cross sectional dimensions of columns and beams are exhibited in Figures. 16 

(a) and (d), respectively. All the dimensions used in Figure 15 were in mm. Figure 16 (b) 

shows that both columns are loaded with 700 kN constant forces that pushing consisted in 

imposing a displacement law to the top left joint. Noticeably, since there were no distributed 

forces acting on the beams, there was no cracking prior to the lateral pushing. Properties of 

reinforcing bar obtained from Güner (2008) is presented in Table 7 and 28 MPa concrete was 

used by Güner (2008). 
Table 7 

Properties of reinforcements 
 

Bar dia 

(mm) 

Area 

(mm2) 

Yield stress 

(MPa) 

Ultimate  

stress (MPa) 

Modulus of 

elasticity (GPa) 

Strain at hardening 

strain x 10-3 (mm/mm) 

Ultimate strain x 

10-3 (mm/mm) 

20 314 418 596 193 9.5 67 

10 78 454 640 200 9.5 67 

 

During numerical analysis by ABAQUS (2014), the loads are applied in two steps. In first 

step, initial constant forces of 700 MPa is applied on top end of the columns as linearly 

increasing load to produce initial stress state.  In second step, a gradually increasing lateral 

displacement is applied at top left corner of the column. During the application of load, base 

of the columns is kept fixed.  Lateral force versus deflection plot of top left corner of the 

frame obtained from FE analysis is shown in Figure 17. 

 

 
Fig. 17.  Lateral force vs deflection of simulated RC frame with test result of Güner (2008). 

 

From load deflection plot, the peak lateral load obtained from FE analysis is 350 kN whereas 

the experimental frame sustained upto 340 kN load. The differences obtained in peak lateral 

forces between the experimental and present numerical analysis is 3% which is reasonable. 

Undulation has been observed in load deflection plot because the beam is vibrated by tension 

crack during analysis.  
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3.1.8 Crack patterns and damage 

The crack patterns and damage obtained from the test is compared with present FE analysis. 

Figure 18 (a) presents the crack patterns of RC frame tested by Güner (2008) and Figure 18 

(b) presents the tension damage of the frame obtained from FE analysis using CDP model. 

The crack patterns obtained from FE analysis conform reasonably well with the test result of 

Güner (2008). 

 

Fig. 18. Damage pattern of RC frame (a) experimental (Güner, 2008) and (b) simulated. 

 

4. Conclusions  

From limited study of this current research works, following conclusions can be drawn: 

 

− Numerical modelling of RC beam, column and frame are done successfully against static 

load using FE software ABAQUS (2014) based on nonlinear FE method. The stress 

distributions, crack patterns, failure type and load carrying capacity of the RC beam, 

column and frame under static load obtained from present numerical analyses are shown a 

good correlation with the theoretical and experimental results. 

− FE model is validated with gradually increasing static load on RC beam to predict and 

compare different stages of loading. FE result shows good agreement with the theoretical 

result in each loading stages, i.e., a) stress elastic and section uncracked, b) stress elastic 

and section cracked, and c) loading which produce nominal moment, Mn (stress become 

plastic). 

− FE model of RC beams with similar boundary conditions and geometry but with different 

numbers of stirrups have been verified against theoretical as well as test result of Saatci 

(2007) using the proposed method to understand their effects on flexure capacity and 

failure behavior of beam. FE analyses shows that with the increase of stirrup percentage, 

the load carrying capacity and ductility of the column increase. Besides, it is observed 

that beam without shear reinforcement fails in shear and beam with adequate shear 

reinforcement fails due to flexure.  

− FE model of RC columns with similar boundary conditions and geometry but with 

different numbers of ties have been checked against theoretical result using the proposed 

method to have deep insight of confinement effect and failure behavior. FE analyses 

shows that inclusion of tie bar can increase the axial capacity as well as axial 

displacement of any RC column. 

− FE simulation of RC frame under monotonic loading is verified by comparing with the 

test results obtained from Güner (2008). Good correlation in load displacement plot 

between the FE analysis and test result is found. Moreover, crack patterns of the RC 
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frame from nonlinear FE analyses using the CDP model of ABAQUS (2014) conform 

reasonably well to the cracks and damage patterns observed in the tests.  
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