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FORMATION OF SHEAR BAND IN PLANE STRAIN
COMPRESSION TEST

siddiquee, M. S. Al,, Tanaka, T2. and Tatsuoka, F3

ABSTRACT : The solutions of boundary value problems involving strain
softening material property are full of serious difficulties from both
modeling of strain-localization and numerical and mathematical
points of view. In this paper, a realistic soil model is applied to capture
the formation of shear band in a Plane Strain Compression (PSC) test on
dense sand with a very high angle of internal friction. The model
(Tatsuoka et al., 1993) is based on experimental findings about inherent
and induced anisotropies involved in sand. Stress-dilatancy relation is
considered through non-associated plastic flow. Mesh size dependent
hardening modulus is considered to alleviate the mesh size dependency
of the solution. In the simulations shear band formed without the
introduction of any physical defects. 1t is found that numerical precision
crror is sufficient to trigger the formation of shear band. Different mesh
sizes, advantage of symmetry and boundary conditions are tested
numerically to check the formation of shear band. It is found that mesh
size, domains taken for the analysis and boundary condition has
profound efect on the formation of shear band in PSC test. The result of
simulation are compared with that of the experiments.
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INTRODUCTION

The straightforward use of the strain softening model in a classical
continuum generally does not result in a well-posed problem. The field
equations that describe the motion of the body lose ellipticity and
become hyperbolic as soon as strain softening occurs. In the eliptic zone,
the wave speeds become imaginary and the localization zones stay
confined to a line with zero thickness (in 2D case) and the energy
consumption in this zone remains zero. These results are in
contradiction with experimental data, where a shear band (mode-I1)
localization shows a finite width of localized zone and a finite value for
the consumption of energy. The finite element solution tries to capture
the localization zone of zero thickness, which results in a mesh-
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sensitivity. There are several techniques (Needleman, 1988), which are
discussed in the review section, employed to obtain mesh size
independent shear banding. In this paper, the simplest model is adapted
with a view that other affecting factors are equally important in
triggering and capturing shear band.

A material model for a granular material with a very high angle of
internal friction was used with the features of (1) highly non-linear pre-
peak stress-strain relation including inherent and induced anisotropies,
(2) non-associated flow characteristics, (3) post-peak strain softening,
and (4) strain-localization into a shear band with a specific width
(Siddiquee, 1991, Tatsuoka et el.,, 1991). Inherent and induce
anisotropies include the strength anisotropy and pressure-sensitivity of
the deformation and strength characteristics of sand respectively. The
material model will be briefly described in the later section.

The formation of shear band is obtained without any introduction of
weak zone or defects in the description of the mesh. It has been observed
in the numerical simulation that mesh size, domains taken for the
analysis and boundary condition has profound effect on the formation @f
shear band in PSC test. The result of simulation are compared with that
of the experiments.

REVIEW

Review is concentrated on the formation of shear band. It is a well
known fact that strain softening material yields mesh sensitive
solutions. Several techniques have been proposed to bypass these
unacceptable mesh-dependency. The-methods are,

Mesh size dependent hardening modulus

This method employs a mesh-size dependent hardening modulus so
as to obtain mesh-independent objective solutions. This procedure
appears to have been first proposed by Pietruszcak and Mroz (1981}, and
has been employed by a number of authors, notably Willam et al. (1984,
1985), A simplified version of this method is used in this study after
Tanaka et al. (1990). This model is also used in mode-I fracture in the
name of Fracture energy model in Bazant and Oh (1983). The model is
based on the assumption that the area under the softening curve can be
regarded as a material parameter. In order to guarantee a mesh-objective
consumption of energy, the soltening modulus is made a function of the
element size. This kind of shear banding model can incorporate a
characteristics lengih of shear band in the material description and this
can be based on the important experimental observation of localization
that it has a finite size. The width of localization zone W is determined



experimentally, for instance for concrete W, = 2.7d,, in which d, is the
maximum aggregate size (Bazant and Pijaudier-Cabot, 1989) and for
sands wg = 10d, -20d,, in which dg is the mean grain size diameter
(Muhlhaus and Vardoulakis, 1987, Tatsuoka et al., 1994).

Nonlocal Hardening model

These models are basically same as the model described above (mesh
size dependent hardening modulus). In this model the internal plastic
variable is averaged over a representative volume. This methods provide
a localization limiter so that the softening band is restricted to a zone of
certain minimum size which is a material property. This concept,
originally introduced on the basis of statistical analysis of
heterogeneous materials, has been widely applied in elasticity (Eringen
and Edelen, 1972). Application of the nonlocal concepts to strain-
softening was proposed by Bazant, Belytschko and Chang (1984). It was
later simplified by the concept of nonlocal damage (Bazant and Lin,
1988). In this approach the main idea is that only those variables which
cause strain-softening are subjected to nonlocal formulation.

Gradient plasticity model

In this method, the continuum description (either stress or strain) is
enriched by inclusion of higher-order gradient terms. Spatial derivatives
of the inelastic state variables enter the constitutive equations. This
approach defines a dependence of the yield function on the second-order
gradient of the equivalent plastic strain (Muhlhaus and Aifantis 1991).

Rate-dependeni model

An entirely different approach is the inclusion of rate-dependence in
the constitutive equations (Wu and Freund 1984, Needleman 1988, Loret
and Prevost 1990). Extra higher-order time derivative terms prevent the
field equations from becoming elliptic and keep the problem well-posed.
Dispersive waves and an implicit length scale enables the rate-dependent
continuum to capture localization of deformation.

Micro-polar (Cosserat) continuum model

The micro-polar (Cosserat) continuum model is based on the idea of a
micro-structure subdivided into micro elements with rotational degrees
of freedom (Cosserat and Cosserat 1909, Gunther 1958, Muhlhaus and
Vardoulakis 1987). This model closely connects the heterogeneous
character of softening materials as sands, rock and concrete. A length
scale is introduced by a finite size of the micro-elements. The
regularization eflect comes from the introduction of couple-stresses and




micro-rotations, so that extra rotational degrees-of-freedoms are
defined.

MATERIAL MODEL

The material model used in this paper is a generalized elasto-plastic,
isotropic strain hardening-softening one. It takes into account of strain
localization associated with shear banding by introducing a
characteristic width of shear band in the additive elasto-plastic
decomposition of strain. Unlike the method used by Pietruszczak and
Mroz, here no direction of shear banding is specified. Rather, it is
implicitly assumed that the direction of shear band coincides in a broad
sense with the direction of maximum shear strain. A generalized
hyperbolic equation (Tatsuoka et al., 1993) has been used as the growth
function of the yield surface. The yield surface used is a generalized
Mohr-Coulomb one given by;

1
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where I; is the first invariant of stress (i.e. hydrostatic stress
component), J, is the second invariant of deviatoric stress and g(0) is the
Lode angle function which is defined as;
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7 is the deviatoric stress at 8 = 30° (on the = - plane), which is related to
the mobilized angle of internal friction @, as :

g = @

= 2 sin 8 b
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The plastic potential is defined as :

v=ohh+ VJp -K=0 @

This equation of plastic potential is Drucker-Prager type, and
similar to that of yield surface except the difference in that g(6) = 1.0 in
Eq. (1) This equation was employed so as to have differentiability at all
stress-states.

The factor o' depends on the type of analysis. As all the analysis was
done under plane strain conditlions in the present study, the factor o
used was; ’
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o = tan y (5)
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where y is the mobilized angle of dilatancy, which is given by ;
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where de P and de; P are the major and minor principal strain
increments (positive in compression). In this study, the value of y was
determined from Rowe's stress dilatancy relation (Rowe, 1962).

p
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As the model has the yield function and plastic potential surface
having dfferent forms, it is one of the non-normal plasticity models, or
in other words it is a non-associated flow model (Vermeer and de Borst,
1984).

In the present study, a fine quartz-rich sand (Toyoura sand) was
selected as the material to be analyzed. This sand was also used in the
model bearing capacity test of footing which will be described later in
this paper. The pressure-dependency and inherent anisotropy of the
deformation and strength characteristics of air-pluviated Toyoura sand
measured under plane strain conditions as reported elsewhere (Tatsuoka
et al.,, 1991) have been implemented into the material model by
introducing directly the empirical equations for them (Tatsuoka et al.,
1993).

SOLUTION STRATEGY

Solution of systems of nonlinear equations involving the governing
non-linear equation is ;
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where P is the internal force vector, P/ is the nodal forces due to initial
stresses, F is the external force vector, B is the strain-displacement
transformation matrix, N is the number of elements in FEM
discretization, ¢ is the stresses in each element at Gauss points and Ve is
the volume of each element.

The solution to the above governing equation can be obtained by
achieving the steady state response of the following dynamic equation of
motion (Zienkiewicz, 1984);




mu+cai+p -Pt =F ©)

where m is the diagonalized mass matrix, ¢ is the damping matrix, which
is a vector for critically damped dynamic relaxation, u is the velocity
vector and u is the acceleration vector.

Then, applying the central difference technique to Eq. (9) and replacing
the damping by the following well-known relation;

c=oam (10)
the following relaxation equation can be derived ;
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Here, a is the damping ratio, which is the most critical value to be
determined. Using the following substitutions;

§=050t, &= g - =18 (12)
2
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Eq. (11) can be rewritten in the following concise form;
Ut = § (m'Rt +2ut - 5, ut4y (13)

There are a number of methods that can estimate a reasonable value of
the critical damping parameter, a. Some of the methods need some extra
iteration to determine the first peak in kinetic energy variation of an
undamped free vibration (Ramesh and Krishnamoorthy, 1993). Another
method (Bunce, 1972) uses the Rayleigh's quotient to determine the
approximate damping in an adaptive way using the current solution
parameters. Namely, the Rayleigh's quotient is;

]xKx

where x is the eigen vector, which can be approximated by incremental
displacement vector (u) and K is the global stifiness matrix, which can be
approximated by a local tangent stiffness (K!f). Mass matrix M can be well
approximated by a diagonal matrix, m. So the damping ratio a is
determined by;

u Kltu
umu

(15)




where the local tangential diagonal stiffness matrix is approximated
from the following equation (Underwood, 1983);
tp L -At
K= _P_L_f_ ae)
A u

As DR is based on an explicit integration scheme, it suffers from the
slability problem. This instabilily arises mainly from the mismatch of
integration speed to deformation wave speed. Mathematically, this
condition can be expressed as ;

At €= % (17
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where B is a stability enforcing factor (B<1.0), and [ is the minimum
distance between the adjacent nodal points for an element. For conslant
strain elements, the value of P can be near 1.0, but for higher order
elements it reduces very fast. V. is the constrained compression wave
velocity of the medium, since the pseudo-densities are calculated
separalely in each of the x and y directions.

Using the expression of the constrained elaslic compression wave
velocily, V,, Eq. (17) can be re-wriiten in the following form;

12
At< B \/ ————pﬂg?l(_u) L ~ 18)

where p is Lhe density of the medium, v is the Poisson's ratio and E is the

Young's modulus of the medium. Based on Eq. (18), a scaling method can
be introduced, which is essei.lially a mesh homogenization (Underwood,
1983, Key et al.,, 1982). In all of the numerical tests described in this
paper, the only adjustable DR parameler was f, which was set equal to 0.6
to achieve the stability of the explicit DR computiation. All the other
parameters were adapled and adjusted automatically throughout the
equilibrium iterations. In the displacement control solution, some of the
displacement components are fixed during one load step while the others
are solved. Equations for fixed displacement components are as follows ;

utat = § (MR +2uf-§, ut4t) (19)
R4 =0, §;= § = 1.0,uf =ut"4

The other degrees of freedom are solved by Eq. (13) as usual.

PROBLEM SETUP AND ANALYSIS

For a comprehensive analysis of the numerical schemes described in
the previous section, a relatively simple problem was selected. In the



context of FEM, it is a 2D domalin of PSC test discretized by four noded
quadrilaterals (Tanaka and Kawamoto, 1988} (Fig. 1) . The confining
pressure o3 is constant and equal to 0.8 x 98 kPa. The cases analyzed are
listed in Table 1.
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Fig 1. Boundary conditions for (a} symmetrically discretized and (b} full
mesh.

Four noded quadrilateral elements in general show a stiff response.
In Order to obtain an accurate solution, reduced integration (Zienkiewicz
et al., 1971) was used. Reduced integration in a four noded isoparametric
element can give rise to a zero-energy mode (hour-glass mode). An anti-
hourglass scheme {Flanagan and Belytschko, 1981) was used to prevent
any probable hour-glass mode. A careful choice of parameters is required
for the hour-glass control in a given materially non-linear analysis. In
the present study, an elastic stiffness approach was employed, where a
very small elastic stiffness (0.05% of the actual material stiffness) was
added to the non-linear system as hour-glass resisting nodal force
whenever any element starts to form a hour-glass mode. The
approximate parameter was found after some trial runs. Then this
procedure prevented effectively a hour-glass mode while it did not
increase the stfIness of the solution.




The integration of the elasto-plastic equation was done by the retum
mapping scheme (Ortiz and Simo, 1986), which is a first-order-
approximate Euler backward integration. The stress-strain relation of
air-pluviated Toyoura sand to be solved by DR is given in Fig. 2. It was
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Fig 2. Stress-strain relationship under plane strain conditions for the
model problem.

assumed that the deformation is homogeneous up to the peak stress state,
while strain localization into a shear band starts at the peak stress state.
This assumption is based on experimental observations in plane strain
compression tests (Tatsuoka et al., 1990). In the post-peak regime,
therefore, the deformation of the whole of the element consists of the
plastic deformation in the process of loading occurring in the shear band
and the elastic rebound of the whole of the element. The post-peak stress
strain relations shown in Fig. 2 are those average for the 2.5 cm x 2.5 cm
element. As a shear band width of 0.3 cm is assumed in the post-peak

regime, the shear strain increment in the shear band is \/5 (2.5/0.3)
times larger than those shown in Fig. 2. The volumetric strain g, consists
of elastic and plastic paris (i.e. €, P), and for a given plastic major
principal strain increment d £,F, the increment d ¢, ¥ is obtained by

Rowe's stress-dilatancy equation (Eq. 7) with K = 3.5. The peak and



residual angles of friction ¢, and ¢, were determined based on
experimental results (Tatsuoka et al., 1993). The elastic shear modulus,
G® was equal to 7722 kPa, which was obtained by substituting a void ratio
e = 0.66 into the empirical relation;

2.17-9 ﬁ)m
1+92 = g

P, is the atmospheric pressure equal to 98 kPa, The elastic Poisson's
ratio equal to 0.3 was used.

The introduction of strain localization is also done by distributing
the total width of shear band with one elements' all the gauss points. The
following table shows the cases analyzed to assess the properties and
suilabililty of different types of elements. This point was extensibly
studied to find the suitable element which can capture the strain
localization phenomenon as closely as to the one seen in the PSC
experiment.

Table 1 Effect of type of element on PSC solution

& = 900 . B, 20

Cases Element Number | Gauss |Stability [Total no. |Total no.

Type of nodes | Points | factor, p Jof nodes |ofclements
sqrl |[Iso-p element 4 1 . 0.5 121 100
s400 |Iso-p element 4 1 0.5 441 400
sr800 |Iso-p element 4 1 0.5 861 800
crstps | Iso-p element 4 ! 0.5 221 400
f800 |Iso-p element 4 1 0.6 861 800
f800s | Iso-p element 4 1 0.6 861 800

Meshes are shown at the beginning of each figure that will come into
discussion subsequently. The boundary conditions are imposed on a
quarter of the PSC element test domain (taking advantage of the
symmetry} in all cases except case "f800", where a full element is used
under a boundary condition (with and without friction) similar to that of
the experiment.

RESULTS AND DISCUSSIONS

Fig. 3 shows the result of case "sqrl" with one point reduced
integration. In this case due to the coarseness of meshing, a relatively
wide shear band is developed. If the mesh is refined further like in Fig. 4
(case "s400", it shows a completely different picture. Now the boundary
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Fig 3. Results of PSC simulation for case "sqrl” consists of four noded
elements with one point reduced integration.

condition shows a large effect on the formation of shear band. In fact, a
kind of wave reflection is observed at the fictitious boundary, i.e., along
the central lines (vertical and horizontal) with the specimen. Fig. 5
shows the sequential development of maximum shear strain, y for the
case "s400". A clear rebound type multiple shear banding is observed
mainly due to the boundary effect as shear band tries to form across the
whole element. Fig. 6 is the result of case "sr800" which is further refined
mesh with the same four-noded element with one- point reduced
integration. The shear banding has a similar feature of multiple shear
banding probably due to the smooth kinematically constrained
boundary condition imposed from symmetry.
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Luod sop 250

Lowd sap= 30

Y-Axis

Displacement Field Strain Field
Loed siepm 250 Max. disp 13322 (cm} Lgsd sape 250 ehimes)= 25.1936K) evimas) 204152}

T

AN
ALNMNNNNSY
AN
ALANNNNNNSS
LLANMANNNNNSSSS)
TN =]

£ VLA NN

Y-Axis

VNS
AV
LR AN
FOV AR
R O
NN W]

T Y-Axs

____ [

Fig 4. Results of PSC simulation for case “s400" consists of four noded
elements with one point reduced integration.

Fig. 7 shows the result of case “crstps”, which consisted of crossed
triangular elements. This kind of element is considered to be effective for
capturing strain localization (Heinstein and Yang, 1992). The result
shows a better capturing of shearband but a reflective nature of multiple
shear banding is clearly formed. From Fig. 8, the sequential development
of maximum shear strain, 7y, is noticed to be formed at different rates,
confirming its reflective nature.

Fig. 9 shows the result of case "f800" (frictional ends), whichconsisted
of four-noded quadrilateral with one-point reduced integration. This
mesh is designed to be full (not taking advantage of the symmetry of
loading) in order to study into the shear band reflection in the case of
quarier-domain analysis. It is very interesting to note that in this case a
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s
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Fig 5. Sequential development of maximum shear strain yshowiﬁg the
Jormation of shear band for case "s400".

pair of very clear and relatively sharp (as much as allowed by iso-
parametric element) shear bands are formed without any refletion or
multiple shear band. All the analysis were performed without applying
any kind of imperfection (neither geometric nor material imperfection).
The reason of the localization without introducing any imperfection
may be attributed to the numerical truncation error, which provides a
pseudo-random distribution of stress-state with a very narrow range of
variation {of the order of the tolerance of the analysis, 10-% multiple
shear band. All the analysis were performed without applying any kind
of imperfection (neither geometric nor material imperfection). The
reason of the localization without introducing any imperfection may be
attributed to the numerical truncation error, which provides a pseudo-
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Fig 6. Results of PSC simulation for case "sr80Q" consists of four noded
elements with one point reduced integration.

shows the meshes after sequential development of deformation, which
shows a clear shear band formation-direction close to the analytical
Roscoe solution (the diretion of zero-extension line at the peak state).
Fig. 11 shows the corresponding maximum shear strain contours. It can
be seen from the figures that initially localization started from four
corners (singular points] but did not have further development.
Subsequently the location of strain concentration shifts to the center of
the specimen. At a loading step of 250, the average axial strain, £, = 7.5%
{n.b. the peak axial strain = 2.2%). In this analysis, the peak and residual
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Fig 7. Results of PSC simulation for case “crstps” consists of crossed
triangular elements with one point reduced integration.

angles of internal friction, ¢, = 34° and ¢,k = 47.17° (for o3 = 0.8
kgf/cm?) are used. It is seen that the theoretical perfect plasticity solution
of shear band, i.e., the Roscoe surface at an angle of (n/4 + y/2) = 45° +
13.17/2 = 51.58° is exactly simulated.

Fig. 11 through 15 show the results of case "f800s", which consisted of
four-noded quadrilateral with one-point reduced integration. This mesh
is designed to be full (not taking advantage of the symmetry of loading)
in order to study the shear band reflection in the case of quarier-domain
analysis and lop, botloms are made perfectly smooth. This resulied in a
single shear band without introducing any kind of imperfection. Figs. 11
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Fig 8. Sequential development of maximum shear strain, y showing
the formation of shear band for case "crsips”.

through 15 show the sequential development of deformed mesh,
maximum shear sirain contours, displacement fields and strain fields
respeclively. They all focus on showing how a single shear band
developed by simulating a plane strain condition without introducing
any kind of imperfection other than the material model itself. Fig. 16
compares the FEM simulation with PSC experiments performed with
Toyoura sand and glass beads (n.b., the FEM simulation is made for the
conditions of PSC tesl using Toyoura sand). It is interesting to note that
glass beads has a larger mean parlicle diametler compared to Toyoura
sand resulting in a larger shear band width and a lesser angle of
localization zone. In the FEM simulation, due to the inability of iso-
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Fig 9. Results of PSC simulation for case "f800" consists of four noded
elements with one point reduced integration (full mesh).

paramelric 4-noded element to deform with a strain jump inside the
element (i.e., strain localization into a narrower shear band), a several
element width is needed (o form the localization zone. Consequently, a
shear band of a larger diameter material (i. e., glass beads) resembled the
FEM simulation of PSC test on Toyoura sand.
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Fig 10. Sequential development of deformed mesh showing the
Jormation of shear band for the case "f800".

CONCLUSIONS

The following conclusions can be drawn from the results and
discussions presented above.

(1) Strain localizatlion can be triggered in the simulation of a plane strain
compression test due to the limitation of numerical precision.

(2) Refleclive nature of strain localization occurs in case of
symmetrically taken domain of analysis. As strain localizatlion is very
sensitive to the boundary, so reflection of localization happens at the
line of symmetry.
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Fig 11. Sequential development of maximum shear strain, y showing
the formation of shear band for the case "f800".

{3) Strain localization or shear band depends on the smoothness or
roughness of the loading boundary. Roughness or smoothness of top and
bottom surface of a specimen in a PSC test simulation determines
number of bands and orientation to some extent.

{4) This method of shear band analysis can be easily incorporated in any
existing finite element code. This method does not involve any
numerical difficulty unlike other sophisticated methods.
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