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Simplified calculation method for serviceability deflection of edge
supported slabs; Part 1: Modelling Slab Response

B Ahmed! and S R Chowdhury!

ABSTRACT: Although deflection is an important parameter in the design of
structure, enough emphasis has not been given to the calculation of slab
deflection. Several methods are presently available for the calculation of
deflection of slabs, none provides the designer with a single approach to
readily quantify the slab deflection for any span ratio and support condition.
The paper briefly reviews the methods available for the calculation of slab
deflection and describes the development and verification of a Finite Element
model used for the purpose of calculation of slab deflection. The model has
been verified against the ACI moment coefficient method. A companion paper
describes the development and verification of coefficient method for
calculation of slab deflection.
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INTRODUCTION

Edge-supported slabs are typically thin relative to their span, and may
show large deflections even though strength requirements are met, unless
certain limitations are imposed in the design to prevent this. The paper briefly
reviews the methods presently available for computing the slab
deflection. It can be observed from the review that although claimed to
be simple, these are complicated in nature and require the use of either
extensive calculations or use of complicated finite element or finite
difference packages, which is rather difficult to use from the view point
of a practising engineer. The present paper then describes the
development and verification of a Finite Element model used to simulate
slab response. ANSYS, a general purpose Finite Element software, has
been employed for this purpose. Shell elements have been used to
develop the slab model. Verification has been conducted by comparing
moments against the moments obtained by ACI moment coefficient
method for various support cases. Since results from the software are
obtained in terms of moment per element width, methods have been
formulated to convert this moment into strip moments as per ACI
method.

ACI method for deflection calculation of edge supported slabs
The simplest approach to deflection control is to impose a minimum

thickness-span ratio. According to ACI Code (1995) calculation of deflection
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is not required provided that the slab thickness is not less than a
certain quantity. This quantity depends on: presence or absence of drop
panels, ratio of flexural stiffness of beam section to flexural stiffness of a
width of slab bounded laterally by centrelines of adjacent panels (if any)
on each side of the beam, ratio of clear spans etc. -

Simson’s Method ‘

This method (described by Ugral, 1981) is applicable only for simply
supported rectangular plates under various loading. Due to complicated
mathematical equations this is difficult for day to day use.

Levy’s solution for rectangular plate

The Levy’s method (described by Ugral, 1981) is applicable to the
bending of rectangular plates with particular boundary conditions on
the two opposite sides and arbitrary conditions of support on the
remaining. Complexities in mathematical derivations are larger than the
previously stated method.

The Strip Method

In strip method (described by Ugral, 1981}, the plate is assumed to -
be divided into two systems of strips at right angles to one another,
each regarded as functioning as a beam. The method permits qualitative
analysis of the plate behaviour very easily but is less adequate, in
general, obtaining accurate quantitative results.

Chang and Hwang method

Chang and Hwang (1996) developed an algebraic equation for
estimating the mid-panel deflections of the two-way slab systems
subjected to uniform gravity loads. The proposed method has initially
been derived from the differential equation of plate and then calibrated
using the results of finite-element analysis. The seml empirical equation
for slab centre deflection is:
(w'+tw_)l4n| (1)
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Obtaining various components of the above equatlon requires

extensive calculations.

A =K KK,

Polak method

Polak (1996) presented a procedure for calculating deflections of
reinforced concrete two-way slabs using Serendipity-plate-bending
element (eight-noded element with 24 degrees of freedom). The method
involves the use of computer programming for obtaining the deflection.
Vanderbilt method

On the basis of “exact” solutions and test data from five multiple
panel structures, Vanderbilt, Sozen and Siess (1965) developed an
approximate method (using finite difference equations) to predict
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deflections of floor slab systems with or without beams. A physical
analogy, for which deflections can be determined on the basis of two-
dimensional methods of analysis, was proposed as a substitute for
three-dimensional structure.

Controlling slab deflection

Besides the computation of slab deflection several methods (Chang
et al 1996, Gilbert 1985, Grossman 1981, Rangan 1982) have been
proposed for controlling slab deflection.

MODELLING SLAB RESPONSE

This section describes the finite element model for simulating slab
behaviour. ANSYS, a general purpose Finite Element software has been
zmployed for this purpose. The developed model uses shell elements
with four nodes for modelling the slab. The developed model can
simulate all the possible support and load conditions that usually occur
in normal building slabs. To estimate the number of elements in each
direction of the slab, studies have been performed to select the number
of elements that gives a constant moment with increasing number of
elements. Moments extracted from the numerical model have been
compared with the moments obtained from ACI moment coefficient
method. Necessary conversions of nodal moments for comparison with
the ACI method have also been described.

Numerical model of edge supported slab

This section describes the technique used for modelling edge-
supported slab. Elements used to represent the slab; boundary
conditions; load application and material properties have been
separately described.

Figure 1 shows the Finite Element mesh of the slab. Four noded
shell elements have been used to represent the concrete slab. These
elements have six degrees of freedom per node.

To represent the support condition proper boundary conditions
have been used. When the support is fixed all the degrees of freedom
(Ux, Uy, Uz, Vx, Vy, Vz) have been restrained (edges AB, AD, AC) and for
. simple support only the translational degrees of freedom (Ux, Uy, Uy
have been restrained (edge BC]).

Load is applied to the surface of the elements as pressure load. To
separate the self-weight from the external loading; a gravitational
constant of ~1 have been used so that the self-weight of each element is
automatically calculated from the given thickness, element size and unit
weight.

Material properties include modulus of elasticity of concrete (Ec =
20685 N/mm?2). Since serviceability deflection is considered this is
sufficient because the response will be only linearly elastic. The model
includes reinforcement in the in an indirect way (the shell elements
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Fig 1. Typical Finite element simulation of slab (see Fig 3, case 9)

incorporated in ANSYS can not include reinforcement). To consider the
effect of reinforcement at first the effective inertia of the slab for unit
width is calculated considering transformed area of the reinforcement
than the thickness is calculated for slab having unit width and same
inertia. This thickness is used to represent a given reinforced slab.
Increase in dead weight due to this is negligible as the unit weight of
steel is higher than concrete.

Interpretation of numerical results for comparison with ACI results

The ACI coefficient method considers inelastic redistribution for
driving the coefficients. At the same time end fixity is not considered to
be 100% for all load case. The method divides the slab into middle strip
and edge strip; moment is considered to be constant at the middle strip
and reduced to one third at the end of edge strip. Thus to compare the
FE results with this method, FE results are to be converted accordingly.

Results obtained from the model are moments at the node per
element in the global direction as shown in Figure 2.
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Fig 2. Conversion of nodal moments to slab internal moment

Figure 2(a) shows the common node "n" associated with four
elements A, B, C and D. As the loading on the elements are only
pressure and no concentrated external moment acts at node "n" and the
rotational degrees of freedom are not restrained, the summation of
nodal solution from all the attached elements will result into zero
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moment at node "n". Thus to obtain slab middle strip moment, element
solution as shown in Figure 2(b) are to be transformed. Moments P, Q,
R, S are about x-axis and p, q, 1, s are about y-axis and per element (for
elements A, B, C and D respectively). To obtain Mx, My in slab these
elements can be assembled as shown in Figures 2(c}] and 2(d)
respectively. Once these moments are obtained for nodes along a slab
section it becomes essential to find out the middle strip moment as
shown in Figure 2(e}.

Moment's Mn.2, Mn-1, Mn, Mn:1 and Mn.z are to be calculated using
method shown in Figure 2(d), for respective nodes. As the ACI method
assumes constant moment along the middle strip; for comparing FE
results with ACI method it can be obtained by averaging them over the
middle strip. Thus:

lM +M +M +M + : M
2 n-2 n-1 n n+l 2 n+2
M”(+)= 3
2

=3[2(M +M +M +M +M )-M _+M )](2)
b n-2 n—1 n n+l n+2 n-2 n+2
and
2 [ ! 1 ’ ’ ! ’ !
Mb (+) - Z 2(Mn—2 t Mn—l t Mn + Mn+l + Mn+2) - (Mn—z + Mn+2 )](3)

Similar methods are applied for evaluating the edge moments. It should
be noted that equations 2 and 3 considers only the average moments
while ignores the inelastic redistribution i.e., the fixed supports are
assumed to have full fixity always, thus FE results interpreted using
these equations must show certain amount of variation for slabs having
fixed support at one or more edges. Since the moments are assumed to
be parabolic and no inelastic redistribution is considered, thus it is
expected that the numerical moments will be larger than ACI moments
in such cases. Instead of comparing moments; it is desirable to compare
the coefficients. It is possible to compute the coefficients for different
support cases and span ratios as follows:

+ + 2
=( . ; 4
M(I,FE Ca.FE Wla ( }
2
M/T,FE = C/:+,FE Wi )
thus:
+
’+ — M{[.FE (6)
a FE le
«a
' MITFE
Cree =—5— (7)
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Where M:.FE and M;‘FE can be obtained from FE results using the
method just illustrated through using equations 2 and 3. Use of

equations 2,3,6 and 7 thus allows the computation of C; FE > Cb+FE’

~pe 3 C .
o FE b.FE

Selection of problems for verification of FE model

The coefficient method for calculating slab moments classifies edge-
supported slabs into nine categories as shown in Figure 3 (cross-
hatched indicate fixed, no hatch indicate simple supported). Besides
support condition to estimate the coefficients the span ratio is used (11
span ratios are present in the Tables from 0.50 to 1.0 with in increment
of 0.05). This produce a total of 9x4x11 = 396 possible combinations for
verification. To reduce the total number of problems for verification
span ratio will be varied from 0.50, 0.60, 0.75, 0.90, 1.0, this produces
a total of 9x4x5 = 180 cases for verification.
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Fig 3. Nine different support conditions
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Optimum mesh for the slab model

Before comparing results obtained from the FE model with ACI
moments, it is essential to select the mesh that provides sufficiently
accurate results at the same time consists of minimum number of
nodes and elements.

For this purpose nodal moments are extracted at the centre of span
and edge in both directions for all nine cases and span ratios 1.0, 0.90,
0.75, 0.60 and 0.50. The moments have been plotted against the mesh
fineness and the optimum mesh has been selected (for which all the
nodal moments become constant). Table 1 shows the optimum mesh for
different span ratios and covering all support cases, complete sets of
graphical results are shown elsewhere by Chowdhury (1999}.

Selection of different parameters

Table 2 lists the different parameters with their magnitude, used to
develop the FE model. Besides these the actual span that has been used
ranges from 3.05m (10 ft) to 6.10m (20 ft). For various span ratios,
smaller span (3.05m) has been kept constant and the larger span has
been changed.

Table 1 Optimum mesh for different span ratio

Span ratio Number of divisions [ Number of divisions in
in shorter direction longer direction
1.00 8 8
0.90 10 10
0.75 8 10
0.60 6 10
0.50 6 12

Table 2 Input parameters for the model

Modulus of Thickness . . Live load Poisson’s
elasticity of Unit weight ratio{v)
concrete
(Ed
20685 =89 mm 23.55x10¢ 1.916x10-3 0.18
N/mm? Perimeter N/mm3 N/mm?
(3x100 psi) | 2 EET (150 pef) (40 psf)

Comparison of coefficients for middle strip moments with ACI
moment coefficients

Results obtained for all cases with different span ratios from the
numerical model have been used to compute the moment coefficients.
Figures 4 to 7 show the variation of Ca(+); Cn(+); Ca(-); Cn(-) with
different span ratio and cases. Complete set of results is presented
elsewhere by Chowdhury (1999). From the above Figures it can be seen
that for Ca(+); Cn(*); Cal-); Cn(-) compared well with the ACI coefficients
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having insignificant difference in few cases. The cause of variation
between Finite element results and ACI coefficients is due to the reason
that in ACI method, inelastic redistribution is considered which is not

considered in Finite Element analysis.
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CONCLUSIONS

A finite element model for edge supported slabs has been described
in this paper that has been verified using ACI moment coefficient
method. Method has been formulated for converting the FE nodal
moments into ACI strip moments. The numerical model developed has
been tested for mesh sensitivity and the optimum mesh has been
determined for all the span ratios covering all the nine cases. Using the
results obtained from these optimum mesh positive and negative
moments in both short and long directions has been determined.
Equations are derived for converting the FE moments and deflections
into moment coefficient and deflection coefficient. Results obtained from
the FE model have been compared graphically with ACI moment
coefficients that demonstrated the accuracy of the model developed. It
has been observed from the comparison of results of FE analyses and
the ACI coefficients that quite satisfactory results are obtained using
the developed model and thus concluded that it can be used for
parametric study to gain insight of slab behaviour. A companion paper
(Ahmed and Chowdhury, 1999) will describe the parametric study and
the development of a coefficient method for calculating slab deflection.
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